Calculating Effects with Linear Models

BIOE 498/598 PJ

Spring 2022

An additive model of effects and interactions

For our reactor example with factors T, C, and K:

yield =
$$\beta_0 + \beta_T T + \beta_C C + \beta_K K$$

+ $\beta_{TC} T C + \beta_{TK} T K + \beta_{CK} C K$
+ $\beta_{TCK} T C K$

where each regression coefficient β_i is half of the *i*th effect:

$$\beta_{\mathsf{T}} = \frac{ME(\mathsf{T})}{2}, \dots, \beta_{\mathsf{T}\mathsf{C}\mathsf{K}} = \frac{Int(\mathsf{T}\mathsf{C}\mathsf{K})}{2}$$

and the intercept β_0 is the mean of all the responses.

For the reactor example

Effect	Size	$oldsymbol{eta}$
intercept	64.25	64.25
Т	23	11.5
С	-5	-2.5
K	1.5	0.75
тс	1.5	0.75
тк	10	5
CK	0	0
TCK	0.5	0.25

$\label{eq:2.1} \begin{array}{l} \mbox{yield} = 64.25 + 11.5 \,\mbox{T} - 2.5 \mbox{C} + 0.75 \,\mbox{K} \\ + \, 0.75 \,\mbox{TC} + 5 \,\mbox{TK} + 0 \,\mbox{CK} \\ + \, 0.25 \,\mbox{TCK} \end{array}$

For the reactor example

•	$oldsymbol{eta}$	Size	Effect
	64.25	64.25	intercept
viole	11.5	23	Т
yier	-2.5	-5	С
	0.75	1.5	K
	0.75	1.5	тс
	5	10	ТК
	0	0	CK
	0.25	0.5	тск

$$\begin{aligned} \text{rield} &= 64.25 + 11.5\,\text{T} - 2.5\text{C} + 0.75\,\text{K} \\ &\quad + 0.75\,\text{TC} + 5\,\text{TK} + 0\,\text{CK} \\ &\quad + 0.25\,\text{TCK} \end{aligned}$$

What is the yield for the treatment T = +, C = -, K = +?

For the reactor example

Effect	Size	$\boldsymbol{\beta}$
intercept	64.25	64.25
Т	23	11.5
С	-5	-2.5
K	1.5	0.75
тс	1.5	0.75
ТК	10	5
CK	0	0
тск	0.5	0.25

What is the yield for the treatment $T=+,\,C=-,\,K=+?$

yield =
$$64.25 + 11.5(1) - 2.5(-1) + 0.75(+1)$$

+ $0.75(1)(-1) + 5(1)(1) + 0(-1)(1)$
+ $0.25(1)(-1)(1)$
= $64.25 + 11.5 + 2.5 + 0.75 - 0.75 + 5 + 0 - 0.25$
= 83

Imagine the simplest model with one factor T.

$$y = \beta_0 + \beta_T T$$

Imagine the simplest model with one factor T.

 $y = \beta_0 + \beta_T \mathsf{T}$

Remember the definiton of the main effect of T:

 $ME(\mathsf{T}) = \bar{y}(\mathsf{T}+) - \bar{y}(\mathsf{T}-)$

Imagine the simplest model with one factor T .

 $y = \beta_0 + \beta_T \mathsf{T}$

Remember the definiton of the main effect of T:

$$ME(\mathsf{T}) = \bar{y}(\mathsf{T}+) - \bar{y}(\mathsf{T}-)$$

From our model

$$\bar{y}(\mathsf{T}+) = \beta_0 + \beta_\mathsf{T}(+1)$$
$$= \beta_0 + \beta_\mathsf{T}$$

$$\bar{y}(\mathsf{T}-) = \beta_0 + \beta_\mathsf{T}(-1)$$
$$= \beta_0 - \beta_\mathsf{T}$$

Imagine the simplest model with one factor T.

 $y = \beta_0 + \beta_T \mathsf{T}$

Remember the definiton of the main effect of T:

$$ME(\mathsf{T}) = \bar{y}(\mathsf{T}+) - \bar{y}(\mathsf{T}-)$$

From our model

$$\bar{y}(\mathsf{T}+) = \beta_0 + \beta_{\mathsf{T}}(+1)$$
$$= \beta_0 + \beta_{\mathsf{T}}$$

$$\bar{y}(\mathsf{T}-) = \beta_0 + \beta_\mathsf{T}(-1)$$
$$= \beta_0 - \beta_\mathsf{T}$$

So according to the model,

$$ME(\mathsf{T}) = \bar{y}(\mathsf{T}+) - \bar{y}(\mathsf{T}-)$$
$$= (\beta_0 + \beta_\mathsf{T}) - (\beta_0 - \beta_\mathsf{T})$$
$$= 2\beta_\mathsf{T}$$

Advantages of estimating effects with linear models

- Easier calculation
- Statistical significance for coefficients (coming soon!)
- Predictions for untested treatments
- Extrapolation beyond the design space (for quantitative factors)

Step 1: Load the data

pilot_data <- read.csv("PilotPlantDesign.csv")
pilot_data</pre>

##		run	Т	С	Κ	yield
##	1	1	-1	-1	-1	60
##	2	2	1	-1	-1	72
##	3	3	-1	1	-1	54
##	4	4	1	1	-1	68
##	5	5	-1	-1	1	52
##	6	6	1	-1	1	83
##	7	7	-1	1	1	45
##	8	8	1	1	1	80

We can visualize factorial designs with a factor-and-response plot, or farplot.

```
First, we need to install the doetools package. If you haven't already, install the devtools package:
```

```
install.packages("devtools")
```

You only need to run this once this semester.

Now you can use devtools to install doetools:

```
devtools::install_github("jensenlab/doetools")
```

You should re-install this package before every assignment in case we add anything to the package during the semester.

Now, let's visualize the data

Step 3: Fit a linear model

```
model <- lm(yield ~ T * C * K, data=pilot_data)
show_effects(model)</pre>
```

##	(Intercept)	64.25
##	Т	11.5
##	С	-2.5
##	K	.75
##	T:C	.75
##	T:K	5.
##	C:K	
##	T:C:K	.25

Fitting linear models with 1m

The standard call to 1m is

model <- lm(<formula>, data=<dataframe>)

where <formula> takes the form

response ~ effects

Fitting linear models with 1m

The standard call to 1m is

model <- lm(<formula>, data=<dataframe>)

where <formula> takes the form response ~ effects

Formulas don't include the coefficients, only the effects. For example the model

yield =
$$\beta_0 + \beta_T T + \beta_K K + \beta_{TK} T K$$

would be specified

yield $\sim 1 + T + K + T:K$

Fitting linear models with 1m

The standard call to 1m is

model <- lm(<formula>, data=<dataframe>)

where <formula> takes the form response ~ effects

Formulas don't include the coefficients, only the effects. For example the model

yield =
$$\beta_0 + \beta_T T + \beta_K K + \beta_{TK} T K$$

would be specified

yield ~ 1 + T + K + T:K

or, since R assumes the model has an intercept, we can omit the 1. yield ~ T + K + T:K

More about formulas

The * operator is a shortcut for adding main effects and interactions. yield ~ T + K + T:K is equivalent to

yield ~ T*K

More about formulas

The * operator is a shortcut for adding main effects and interactions. yield ~ T + K + T:K

is equivalent to

yield ~ T*K

Our complete model

yield ~ T + C + K + T:C + T:K + C:K + T:C:K

can be written

yield ~ T*C*K

More about formulas

The * operator is a shortcut for adding main effects and interactions. yield ~ T + K + T:K

is equivalent to

yield ~ T*K

Our complete model yield ~ T + C + K + T:C + T:K + C:K + T:C:K

can be written

yield ~ T*C*K

The effects in the formula must match column names in the data frame. R looks up the effects in the data frame to construct the *model matrix*.

Why do we prefer coded factors?

```
pilot_planning <- read.csv("PilotPlantPlanning.csv")
pilot_planning</pre>
```

##		run	Т	С	Κ	yield	
##	1	1	160	20	A	60	
##	2	2	180	20	A	72	
##	3	3	160	40	A	54	
##	4	4	180	40	A	68	
##	5	5	160	20	В	52	
##	6	6	180	20	В	83	
##	7	7	160	40	В	45	
##	8	8	180	40	В	80	

model_uncoded <- lm(yield ~ T*C*K, data=pilot_planning)</pre>

Comparing coded vs. uncoded models

sho	ow_effects(mo	odel) <i># coded</i>	
##	(Intercept)	64.25	
##	Т	11.5	
##	C	-2.5	
##	К	.75	
##	T:C	.75	
##	T:K	5.	
##	C:K		
##	T:C:K	.25	

<pre>show_effects(model_uncoded)</pre>			
##	(Intercept)	-14.	
##	Т	.5	
##	C	-1.1	
##	KB	-143.	
##	T:C	.005	
##	T:KB	.85	
##	C:KB	85	
##	T:C:KB	.005	

Comparing coded vs. uncoded models

<pre>show_effects(model) # coded</pre>			
##	(Intercept)	64.25	
##	Т	11.5	
##	C	-2.5	
##	K	.75	
##	T:C	.75	
##	T:K	5.	
##	C:K		
##	T:C:K	.25	

<pre>show_effects(model_uncoded)</pre>			
##	(Intercept)	-14.	
##	Т	.5	
##	C	-1.1	
##	KB	-143.	
##	T:C	.005	
##	T:KB	.85	
##	C:KB	85	
##	T:C:KB	.005	

show_effects(model_fahr)

##	(Intercept)	-22.88889
##	T_fahr	.27778
##	C	-1.18889
##	KB	-158.11111
##	T_fahr:C	.00278
##	T_fahr:KB	.47222
##	C:KB	93889
##	$T_fahr:C:KB$.00278