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The problem with Factorial Designs

Factorial designs are the most efficient designs for estimating effects.

Their efficiency grows as the number of factors increases.

Unfortunately, the number of runs also grows. Quickly.

Factors (k) Runs (2k)

4 16
5 32
6 64
7 128
8 256
9 512
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How do we conduct experiments with lots of factors?

Most experimenters abandon factorial designs when the number of
factors becomes large. Common strategies are to

I Resort to one-at-a-time designs
I Select only a subset of factors for a factorial design

In both cases we lose the efficiency and power of the factorial design.

A better method is to use a fractional factorial design.
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Fractional Factorial Designs

A (full) factorial design with k factors, each with two levels, is called
a 2k design.

We can instead test k factors using only half of the runs of a 2k

design. This is called a 2k−1 fractional design.

For example:

I A 24 design tests 4 factors using 16 runs.
I A 24−1 design tests 4 factors using 8 runs.
I A 23 design tests 3 factors using 8 runs.
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Why do fractional factorial designs work?

Fractional designs are motivated by two guiding principles in
statistical modeling:

1. Effect sparsity states that only a small proportion of the factors
in an experiment will have significant effects.

2. Effect hierarchy states that lower-order interactions (including
primary effects) are more important that higher-order
interactions. (This is also called the hierarchical ordering
principle.)

Both principles become “more true’ ’ as the number of factors
increases.

Fractional designs rely on an assumption that

|low-order effects| � |high-order effects|
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Example: the 24−1 fractional design

We begin with a 23 full factorial design (the base design).

I A B C AB AC BC ABC

+ − − − + + + −
+ + − − − − + +
+ − + − − + − +
+ + + − + − − −
+ − − + + − − +
+ + − + − + − −
+ − + + − − + −
+ + + + + + + +

This design is orthogonal and the design matrix is full rank. We
can’t add a column for D without messing up these properties.
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Confounding

If we choose to set D equal to an existing column in our design, we
have confounded it. Since the factors vary together in our design we
cannot estimate their effects separately.

For example, let D=ABC. Then

βD|ABC = βD + βABC

However, by the hierarchical ordering principle we expect that
βABC ≈ 0 � βD, so

βD|ABC = βD
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The 24−1 fractional design (with D=ABC)

We replace the highest interaction (ABC) with D and fill in the rest
of the interactions.

D=
I A B C AB AC BC ABC AD BD CD ABC BCD ABD ACD ABCD
+ − − − + + + − + + + − − − − +
+ + − − − − + + + − − + + − − +
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+ − − + + − − + − − + + − + − +
+ + − + − + − − − + − − + + − +
+ − + + − − + − + − − − − + + +
+ + + + + + + + + + + + + + + +

All of the variables are now confounded:
A + BCD AB + CD
B + ACD AC + BD
C + ABD AD + BC
D + ABC I + ABCD
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Generator Algebra

Filling in the entire design is impractical, especially for large designs.
We can identify the confounding pattern (or alias structure) using a
special type of algebra.

Generator Algebra Axioms

I XX = X2 = I for any factor X.
I IX = X for any factor X.
I Multiplication commutes, associates, and distributes.
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Generating the 24−1 design

We start with the generator of the design — the replacement we
made to the base design.

D = ABC
(D)D = (ABC)D

D2 = ABCD
I = ABCD

This last statement (I=ABCD) is called the defining relation for the
design with generator D=ABC.
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Generating the 24−1 design (continued)
With the defining relation (I=ABCD) we can compute the
confounding for any variable.

For A:

A(I) = A(ABCD)
A = A2BCD

= IBCD
= BCD

For the interaction CD:

CD(I) = CD(ABCD)
CD = ABC2D2

= AB
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Practice: A 25−1 design
Let’s make a 25−1 fractional factorial design (A, B, C, D, & E).

I What is the best generator for this design?

E = ABCD

I Use this generator to construct the defining relation.

EE = ABCDE
I = ABCDE

I What is the interaction AB confounded with in our design?

AB(I) = AB(ABCDE)
AB = A2B2CDE
AB = CDE
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Next time: Lower fractional factorial designs

A 2k−1 fractional factorial design has half the runs of a factorial
design.

We can also construct 2k−2 designs (1/4 of the runs), 2k−3 designs
(1/8 of the runs), etc.

These lower fractional designs trade fewer runs for greater
confounding. We will develop a metric to characterize the level of
confounding.


