Fractional Factorial Designs

BIOE 498/598 PJ

Spring 2022

The problem with Factorial Designs

Factorial designs are the most efficient designs for estimating effects.

The problem with Factorial Designs

Factorial designs are the most efficient designs for estimating effects. Their efficiency **grows** as the number of factors increases.

The problem with Factorial Designs

Factorial designs are the most efficient designs for estimating effects. Their efficiency **grows** as the number of factors increases. Unfortunately, the number of runs also grows. Quickly.

Factors (k)	Runs (2^k)
4	16
5	32
6	64
7	128
8	256
9	512

Most experimenters abandon factorial designs when the number of factors becomes large. Common strategies are to

- Resort to one-at-a-time designs
- Select only a subset of factors for a factorial design

Most experimenters abandon factorial designs when the number of factors becomes large. Common strategies are to

- Resort to one-at-a-time designs
- Select only a subset of factors for a factorial design

In both cases we lose the efficiency and power of the factorial design.

A better method is to use a *fractional factorial design*.

A (full) factorial design with k factors, each with two levels, is called a 2^k design.

We can instead test k factors using only half of the runs of a 2^k design. This is called a 2^{k-1} fractional design.

A (full) factorial design with k factors, each with two levels, is called a 2^k design.

We can instead test k factors using only half of the runs of a 2^k design. This is called a 2^{k-1} fractional design.

For example:

- ► A 2⁴ design tests 4 factors using 16 runs.
- ► A 2⁴⁻¹ design tests 4 factors using 8 runs.
- ► A 2³ design tests 3 factors using 8 runs.

Why do fractional factorial designs work?

Fractional designs are motivated by two guiding principles in statistical modeling:

- 1. *Effect sparsity* states that only a small proportion of the factors in an experiment will have significant effects.
- 2. *Effect hierarchy* states that lower-order interactions (including primary effects) are more important that higher-order interactions. (This is also called the *hierarchical ordering principle*.)

Both principles become "more true'' as the number of factors increases.

Why do fractional factorial designs work?

Fractional designs are motivated by two guiding principles in statistical modeling:

- 1. *Effect sparsity* states that only a small proportion of the factors in an experiment will have significant effects.
- 2. *Effect hierarchy* states that lower-order interactions (including primary effects) are more important that higher-order interactions. (This is also called the *hierarchical ordering principle*.)

Both principles become "more true" as the number of factors increases.

Fractional designs rely on an assumption that

 $|low-order \ effects| \gg |high-order \ effects|$

Example: the 2^{4-1} fractional design

We begin with a 2^3 full factorial design (the *base design*).

Ι	А	В	С	AB	AC	BC	ABC
+	_	_	_	+	+	+	_
+	+	_	_	_	_	+	+
+	_	+	_	_	+	_	+
+	+	+	—	+	—	—	_
+	_	_	+	+	_	_	+
+	+	_	+	_	+	_	_
+	_	+	+	_	_	+	_
+	+	+	+	+	+	+	+

Example: the 2^{4-1} fractional design

We begin with a 2^3 full factorial design (the *base design*).

Ι	А	В	С	AB	AC	BC	ABC
+	—	_	_	+	+	+	_
+	+	_	_	_	_	+	+
+	_	+	_	_	+	_	+
+	+	+	_	+	_	_	_
+	_	_	+	+	_	_	+
+	+	_	+	_	+	_	_
+	_	+	+	_	_	+	_
+	+	+	+	+	+	+	+

This design is orthogonal and the design matrix is full rank. We can't add a column for D without messing up these properties.

Confounding

If we choose to set D equal to an existing column in our design, we have *confounded* it. Since the factors vary together in our design we cannot estimate their effects separately.

For example, let D=ABC. Then

 $\beta_{\rm D|ABC} = \beta_{\rm D} + \beta_{\rm ABC}$

Confounding

If we choose to set D equal to an existing column in our design, we have *confounded* it. Since the factors vary together in our design we cannot estimate their effects separately.

For example, let D=ABC. Then

$$\beta_{\rm D|ABC} = \beta_{\rm D} + \beta_{\rm ABC}$$

However, by the hierarchical ordering principle we expect that $\beta_{\rm ABC}\approx 0\ll\beta_{\rm D},$ so

$$\beta_{\rm D|ABC} = \beta_{\rm D}$$

The 2^{4-1} fractional design (with D=ABC)

We replace the highest interaction (ABC) with D and fill in the rest of the interactions.

							D=								
I	Α	В	С	AB	AC	BC	ABC	AD	BD	CD	ABC	BCD	ABD	ACD	ABCD
+	-	-	-	+	+	+	-	+	+	+	-	-	-	-	+
+	+	_	_	-	-	+	+	+	-	-	+	+	-	-	+
+	-	+	-	_	+	_	+	-	+	-	+	-	-	+	+
+	+	+	_	+	_	_	-	-	_	+	-	+	_	+	+
+	-	-	+	+	-	_	+	-	-	+	+	-	+	-	+
+	+	-	+	_	+	_	-	-	+	-	-	+	+	-	+
+	-	+	+	_	-	+	-	+	-	-	-	-	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

The 2^{4-1} fractional design (with D=ABC)

We replace the highest interaction (ABC) with D and fill in the rest of the interactions.

							D=								
1	Α	В	С	AB	AC	BC	ABC	AD	BD	CD	ABC	BCD	ABD	ACD	ABCD
+	-	-	-	+	+	+	-	+	+	+	-	-	-	-	+
+	+	—	—	—	—	+	+	+	—	—	+	+	—	—	+
+	-	+	-	_	+	_	+	_	+	-	+	-	-	+	+
+	+	+	_	+	-	_	-	-	-	+	-	+	_	+	+
+	-	-	+	+	_	_	+	_	-	+	+	-	+	-	+
+	+	-	+	_	+	_	-	_	+	-	-	+	+	-	+
+	-	+	+	_	_	+	-	+	-	_	-	-	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

All of the variables are now confounded:

A + BCD	AB + CD
B + ACD	AC + BD
C + ABD	AD + BC
D + ABC	I + ABCD

Filling in the entire design is impractical, especially for large designs. We can identify the *confounding pattern* (or *alias structure*) using a special type of algebra.

Filling in the entire design is impractical, especially for large designs. We can identify the *confounding pattern* (or *alias structure*) using a special type of algebra.

Generator Algebra Axioms

- $\blacktriangleright XX = X^2 = I \text{ for any factor } X.$
- $\blacktriangleright IX = X \text{ for any factor } X.$
- Multiplication commutes, associates, and distributes.

Generating the 2^{4-1} design

We start with the *generator* of the design — the replacement we made to the base design.

D = ABC(D)D = (ABC)DD² = ABCDI = ABCD

Generating the 2^{4-1} design

We start with the *generator* of the design — the replacement we made to the base design.

D = ABC(D)D = (ABC)DD² = ABCDI = ABCD

This last statement (I=ABCD) is called the *defining relation* for the design with generator D=ABC.

With the defining relation (I=ABCD) we can compute the confounding for any variable.

With the defining relation (I=ABCD) we can compute the confounding for any variable.

For A:

A(I) = A(ABCD) $A = A^{2}BCD$ = IBCD= BCD

With the defining relation (I=ABCD) we can compute the confounding for any variable.

For A:

A(I) = A(ABCD) $A = A^{2}BCD$ = IBCD= BCD

For the interaction CD:

With the defining relation (I=ABCD) we can compute the confounding for any variable.

For A:

A(I) = A(ABCD) $A = A^{2}BCD$ = IBCD= BCD

For the interaction CD:

CD(I) = CD(ABCD) $CD = ABC^2D^2$ = AB

Practice: A 2⁵⁻¹ design

Let's make a 2^{5-1} fractional factorial design (A, B, C, D, & E).

What is the best generator for this design?

Practice: A 2^{5-1} design

Let's make a 2^{5-1} fractional factorial design (A, B, C, D, & E).

What is the best generator for this design?

 $\mathbf{E} = \mathbf{ABCD}$

Use this generator to construct the defining relation.

Practice: A 2⁵⁻¹ design

Let's make a 2^{5-1} fractional factorial design (A, B, C, D, & E).

What is the best generator for this design?

E = ABCD

Use this generator to construct the defining relation.

EE = ABCDEI = ABCDE

What is the interaction AB confounded with in our design?

Practice: A 2⁵⁻¹ design

Let's make a 2^{5-1} fractional factorial design (A, B, C, D, & E).

What is the best generator for this design?

E = ABCD

Use this generator to construct the defining relation.

EE = ABCDEI = ABCDE

What is the interaction AB confounded with in our design?

AB(I) = AB(ABCDE) $AB = A^{2}B^{2}CDE$ AB = CDE

Next time: Lower fractional factorial designs

A 2^{k-1} fractional factorial design has half the runs of a factorial design.

We can also construct 2^{k-2} designs (1/4 of the runs), 2^{k-3} designs (1/8 of the runs), etc.

These lower fractional designs trade fewer runs for greater confounding. We will develop a metric to characterize the level of confounding.