Lower Fractional Designs

BIOE 498/598 PJ

Spring 2022

Review

- A full factorial design with k factors requires 2^k runs.
- A half factorial design uses only 2^{k-1} runs.
 - Begin with a base design.
 - Set the remaining factor equal to an interaction (generator, E = AB)
 - Compute the defining relation (I = ...) and confounding/alias structure.

Review

- A full factorial design with k factors requires 2^k runs.
- A half factorial design uses only 2^{k-1} runs.
 - Begin with a base design.
 - Set the remaining factor equal to an interaction (generator, E = AB)
 - Compute the defining relation (I = ...) and confounding/alias structure.
- Half-fractional factorials in action
- Today we define quarter- or eighth-factorial designs!

A large (2^5) unreplicated study

```
tumor <- read.csv("TumorInhibition.csv")
head(tumor)</pre>
```

##		Α	В	С	D	Е	inhibition	run	half	pb
##	1	-1	-1	-1	-1	-1	61	1	0	1
##	2	1	-1	-1	-1	-1	53	2	1	0
##	3	-1	1	-1	-1	-1	63	3	1	1
##	4	1	1	-1	-1	-1	61	4	0	0
##	5	-1	-1	1	-1	-1	53	5	1	0
##	6	1	-1	1	-1	-1	56	6	0	1

Let's pretend it was a 2^{5-1} half-fractional

half_tumor <- tumor[tumor\$half==1,]
half_tumor</pre>

##		Α	В	С	D	Е	inhibition	run	half	pb
##	2	1	-1	-1	-1	-1	53	2	1	0
##	3	-1	1	-1	-1	-1	63	3	1	1
##	5	-1	-1	1	-1	-1	53	5	1	0
##	8	1	1	1	-1	-1	61	8	1	0
##	9	-1	-1	-1	1	-1	69	9	1	0
##	12	1	1	-1	1	-1	93	12	1	1
##	14	1	-1	1	1	-1	60	14	1	1
##	15	-1	1	1	1	-1	95	15	1	1
##	17	-1	-1	-1	-1	1	56	17	1	0
##	20	1	1	-1	-1	1	65	20	1	0
##	22	1	-1	1	-1	1	55	22	1	0
##	23	-1	1	1	-1	1	67	23	1	1
##	26	1	-1	-1	1	1	45	26	1	0
##	27	-1	1	-1	1	1	78	27	1	0
##	29	-1	-1	1	1	1	49	29	1	1
##	32	1	1	1	1	1	82	32	1	0

Step 2: Look at the data

farplot(half_tumor, response="inhibition", factors=c("A","B","C","D","E

Step 3: Fit a linear model

half_model <- lm(inhibition ~ A*B*C*D*E, data=half_tumor)</pre>

show_	_effects(hal	lf_model,	<pre>scaling=2,</pre>	show_	_effects(m	odel, <mark>scal</mark>	ing=2,	i 18 }r
##	В	20.5		##	В	19.5		
##	D	12.25		##	B:D	13.25		
##	B:D	10.75		##	D:E	-11.		
##	D:E	-9.5		##	D	10.75		
##	E	-6.25		##	E	-6.25		
##	C:E	2.25		##	A:C:E	-2.5		
##	А	-2.		##	C:D	2.125		
##	A:B	1.5		##	B:E	2.		
##	B:C	1.5		##	A:B:E	-1.875		
##	A:E	1.25		##	A:B:C	1.5		
##	B:E	1.25		##	A:B:C:E	1.5		
##	A:D	75		##	A:B:D	1.375		
##	A:C	.5		##	A:B	1.375		
##	C:D	.25		##	Α	-1.375		
##	С			##	B:C:D	1.125		
##	A:B:C	NA.		##	A:C:D:E	1.		
##	A:B:D	NA.		##	A:D	875		
##	A:C:D	NA.		##	B:C	.875		

Visualizing with half-normal plots

daewr::halfnorm(na.omit(get_effects(half_model)))

Half Normal scores

daewr::halfnorm(get_effects(model))

Let's create a 2^{5-2} design (8 runs, factors *ABCDE*).

Let's create a 2^{5-2} design (8 runs, factors *ABCDE*). Start with a base 2^3 design (factors *ABC*).

Let's create a 2^{5-2} design (8 runs, factors *ABCDE*). Start with a base 2^3 design (factors *ABC*). Define D = AB and E = AC.

$$D^2 = I = ABD, \quad E^2 = I = ACE$$

Let's create a 2^{5-2} design (8 runs, factors *ABCDE*). Start with a base 2^3 design (factors *ABC*). Define D = AB and E = AC.

$$D^2 = I = ABD, \quad E^2 = I = ACE$$

Also, $I^2 = I = (ABD)(ACE) = BCDE$.

Let's create a 2^{5-2} design (8 runs, factors *ABCDE*). Start with a base 2^3 design (factors *ABC*). Define D = AB and E = AC.

$$D^2 = I = ABD, \quad E^2 = I = ACE$$

Also, $I^2 = I = (ABD)(ACE) = BCDE$.

Defining relation: I = ABD = ACE = BCDE

Defining relation: I = ABD = ACE = BCDE

$$A(I) = A(ABD) = A(ACE) = A(BCDE)$$

Defining relation: I = ABD = ACE = BCDE

$$A(I) = A(ABD) = A(ACE) = A(BCDE)$$

$$A + BD + CE + ABCDE$$

Defining relation: I = ABD = ACE = BCDE

$$A(I) = A(ABD) = A(ACE) = A(BCDE)$$

A + BD + CE + ABCDE

B + AD + ABCE + CDE C + ABCD + AE + BDE D + AB + ACDE + BCEE + ABDE + AC + BCD

Defining relation: I = ABD = ACE = BCDE

$$A(I) = A(ABD) = A(ACE) = A(BCDE)$$

A + BD + CE + ABCDE

B + AD + ABCE + CDE

C + ABCD + AE + BDE

D + AB + ACDE + BCE

E + ABDE + AC + BCD

BC + ACD + ABE + DE

BE + ADE + ABC + CD

Eighth fractional design: 2^{6-3}

Factors A, B, C, D = AB, E = AC, F = BC

Eighth fractional design: 2⁶⁻³

Factors A, B, C, D = AB, E = AC, F = BC

I = ABD = ACE = BCF

Eighth fractional design: 2^{6-3}

Factors A, B, C,
$$D = AB$$
, $E = AC$, $F = BC$
 $I = ABD = ACE = BCF$

Also, all combinations:

$$I^{2} = I = (ABD)(ACE) = BCDE$$
$$I^{2} = I = (ABD)(BCF) = ACDF$$
$$I^{2} = I = (ACE)(BCF) = ABEF$$
$$I^{3} = I = (ABD)(ACE)(BCF) = DEF$$

Defining relation:

$$I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF$$

A generator's optimality is assessed with three criteria:

- **Resolution:** difference in the level of confounding.
- Aberration: the multiplicity of the worst confounding.
- **Clarity:** # of confounded main effects or two-way interactions.

The resolution of a fractional design is the length of the shortest word in the defining relation.

For the 2^{5-2} design generated by D=AB and E=AC, the definig relation is

$$I = ABD = ACE = BCDE$$

This is a Resolution III design. (Resolution is written with Roman numerals.)

Resolution measures the degree of confounding

A resolution R design has no *i*-level interaction aliased with effects lower than R - i.

A resolution R design has no *i*-level interaction aliased with effects lower than R - i.

Resolution III

• Main effects (i = 1) are confounded with secondary (3 - 1 = 2) interactions.

A resolution R design has no *i*-level interaction aliased with effects lower than R - i.

Resolution III

• Main effects (i = 1) are confounded with secondary (3 - 1 = 2) interactions.

Resolution IV

- Main effects (i = 1) are confounded with tertiary (4 1 = 3) interactions.
- TWIs (i = 2) are confounded with other TWIs (4 2 = 2).

A design with resolution R contains a full factorial design for any subset of k = R - 1 factors.

A design with resolution R contains a full factorial design for any subset of k = R - 1 factors.

If after the fractional experiments you drop to k factors you can re-analyze the data for all the interactions.

- **Resolution:** Length of the shortest word in the defining relation.
- **Aberration:** Number of words with length equal to the resolution.

- **Resolution:** Length of the shortest word in the defining relation.
- ▶ Aberration: Number of words with length equal to the resolution.

$$I = ABCDF = ABCEG = DEFG$$
 resolution IV, aberration 1

- **Resolution:** Length of the shortest word in the defining relation.
- Aberration: Number of words with length equal to the resolution.

$$I = ABCDF = ABCEG = DEFG$$
 resolution IV, aberration 1

$$I = ABCF = ADEG = BCDEFG$$
 resolution IV, aberration 2

We favor the design with the lower aberration. It will have fewer main effects confounded with low-order interactions.

A main effect or two-way interaction effect is **clear** if it is only confounded with higher order terms (three-way or higher).

A main effect or two-way interaction effect is **clear** if it is only confounded with higher order terms (three-way or higher).

Clear effects always lead to tradeoffs. For a 2^{6-2} design:

I = ABCE = ABDF = CDEF 6 main effects clear I = ABE = ACDF = BCDEF 3 main effects + 6 TWIs clear

- 1. Choose the highest resolution that fits your budget.
- 2. For that resolution, choose the **minimum aberration** design.
- 3. If you have particular effects that you know are significant, try to choose a factor or generator that clears them.