Nominal-the-Best Optimization

BIOE 498/598 PJ

Spring 2022

Location vs. Dispersion

- Sometimes we want to study the variation in the response, not the response itself.
- Location describes the central tendency of a response
 - Mean, median, mode
 - All of our models so far use response = location

Location vs. Dispersion

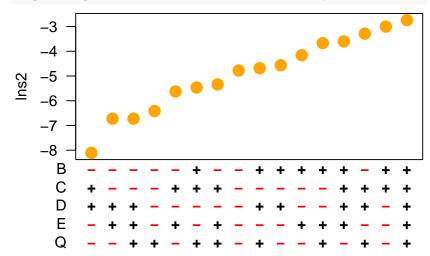
- Sometimes we want to study the variation in the response, not the response itself.
- Location describes the central tendency of a response
 - Mean, median, mode
 - All of our models so far use response = location
- **Dispersion** describes the spread of a response
 - Range, inter-quartile range (IQR), variance, standard deviation
- Location can be studied with unreplicated or replicated designs
- Studying dispersion always requires replicates

Studying dispersion

- **•** The variance σ^2 is the natural statistic for studying dispersion with linear models fit by least-squares
- However, the sample variance s^2 is not a good response for studying σ^2

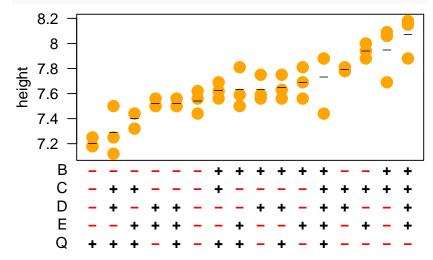
 - ▶ s^2 is left-censored ($s^2 \ge 0$) ▶ s^2 follows a χ^2 distribution, not a normal distribution
- **•** Both problems are fixed by modeling $\ln s^2$ instead of s^2
- Moreover, maximizing $-\ln s^2$ minimizes the variance, so we can keep the same maximization-based framework used for location models

Visualizing the dispersion



farplot(disp, factors=c("B","C","D","E","Q"), response="lns2")

Visualizing the data

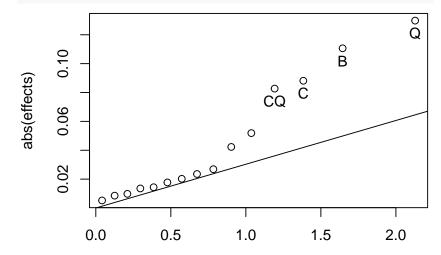


Building the model

Confounding in the 2 ⁵⁻¹ design with I=BCDE:		<pre>show_effects(disp_model, ordered="abs")</pre>			
main effects clear	##	(Intercept)	4.93131		
► BQ	##	В	94543	3	
► CQ	##	D:Q	55538	5	
► DQ	##	B:E	33523	5	
► EQ	##	C:Q	2989		
► BC=DE	##	B:Q	.29437	,	
► BD=CE	##	С	28434		
► BE=CD	##	B:D	21234		
	##	Q	13976	;	
	##	D	.12375	i i	
	##	E	10777	,	
	##	E:Q	06457	,	
	##	B:C	.00079)	

Factors affecting location (spring height)

daewr::halfnorm(na.omit(get_effects(model)))

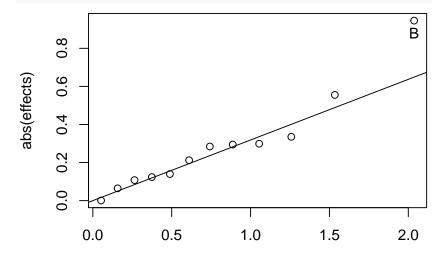


Half Normal scores

zscore= 0.0417893 0.1256613 0.2104284 0.2967378 0.3853205 0.4770404

Factors affecting **dispersion** $(\ln s^2)$

daewr::halfnorm(get_effects(disp_model))



Half Normal scores

zscore= 0.05224518 0.1573107 0.264147 0.3740954 0.4887764 0.6102946

Final Models

height = 7.64 + 0.11B + 0.09C - 0.13Q - 0.08CQ- $\ln s^2 = 4.93 - 0.95B$

Final Models

height = 7.64 + 0.11B + 0.09C - 0.13Q - 0.08CQ- ln $s^2 = 4.93 - 0.95B$

- ▶ We want to minimize process variance (maximize − ln s²), but what about height?
- Often we have a *nominal value* for a response and need to balance reducing variance with keeping the response near the nominal value.

Final Models

height = 7.64 + 0.11B + 0.09C - 0.13Q - 0.08CQ- ln $s^2 = 4.93 - 0.95B$

- ▶ We want to minimize process variance (maximize − ln s²), but what about height?
- Often we have a nominal value for a response and need to balance reducing variance with keeping the response near the nominal value.
- ▶ In this case, we set B = and adjust the nominal value with C and Q.
- C and Q are called adjustment factors since they appear in the model for location but not dispersion.

Nominal-the-Best Optimization

- 1. Use the dispersion model to reduce variation.
- 2. Use adjustment factors to move the location near the nominal value.
- 3. If the location is too far off, repeat but reduce the variation less than before.

Nominal-the-Best Optimization

- 1. Use the dispersion model to reduce variation.
- 2. Use adjustment factors to move the location near the nominal value.
- 3. If the location is too far off, repeat but reduce the variation less than before.

Why it works

Given a nominal value t for a response y, our goal (using quadratic loss) is

$$\min \mathbb{E}(y-t)^2 = \mathbb{E}[(y-\mathbb{E}(y)) + (\mathbb{E}(y)-t)]^2$$
$$= \operatorname{Var}(y) + (\mathbb{E}(y)-t)^2$$

Robust Parameter Design

Factors can be split into two groups

- Control factors can be changed easily
- Noise factors are difficult or impossible to change

Robust Parameter Design

- Factors can be split into two groups
 - Control factors can be changed easily
 - Noise factors are difficult or impossible to change
- Robust Parameter Design finds settings for control factors that mitigate variation from noise factors.
- Mitigation is achieved through noise × control interactions.

Example: Manufacturing boxed cake mixes

• Control factors: Ingredients in the box A, \ldots, D .

- Noise factors: Controlled by the customer
 - E: Egg (small or large)
 - M: Milk (skim or 2%)
 - T: Oven temperature (340°-360°F)

Example: Manufacturing boxed cake mixes

• Control factors: Ingredients in the box A, \ldots, D .

- Noise factors: Controlled by the customer
 - E: Egg (small or large)
 - M: Milk (skim or 2%)
 - T: Oven temperature (340°-360°F)

Controlling for egg size variation (E) using baking soda (B)

Example: Manufacturing boxed cake mixes

• Control factors: Ingredients in the box A, \ldots, D .

- Noise factors: Controlled by the customer
 - E: Egg (small or large)
 - M: Milk (skim or 2%)
 - T: Oven temperature (340°-360°F)

Controlling for egg size variation (E) using baking soda (B)

Recall the definition of Int(EB):

$$\mathsf{Int}(EB) = \frac{\mathsf{ME}(E|B+) - \mathsf{ME}(E|B-)}{2}$$

Mitigating noise trades optimality for robustness

Partial model for egg size E and baking soda B:

taste = ... + 0.2B - 0.7E + 0.4EB + ...

Mitigating noise trades optimality for robustness

Partial model for egg size E and baking soda B:

$$taste = ... + 0.2B - 0.7E + 0.4EB + ...$$

When B = +

• $E + \Rightarrow$ taste = -0.1 • $E - \Rightarrow$ taste = 0.5

When B = -

•
$$E+ \Rightarrow taste = -1.3$$

• $E- \Rightarrow taste = 0.9$

Mitigating noise trades optimality for robustness

Partial model for egg size E and baking soda B:

taste = ... + 0.2B - 0.7E + 0.4EB + ...

When B = +

• $E+ \Rightarrow taste = -0.1$ • $E- \Rightarrow taste = 0.5$

When B = -

- $E + \Rightarrow$ taste = -1.3
- $E \Rightarrow$ taste = 0.9

What should we do?

- The optimal cake has low baking soda and instructions to use a small egg (taste=0.9).
- ▶ If the customer uses a large egg, the taste drops a lot (-1.3).
- Using high baking soda gives a suboptimal taste (0.5 with small egg).
- Customers incorrectly using a large egg will not change taste as much (-0.1).

Designs to optimize robustness

Noise mitigation relies on interactions between control and noise factors.

Designs to optimize robustness

- Noise mitigation relies on interactions between control and noise factors.
- Typically, a Resolution V design is needed.
- The noise×control interactions are most important, so a clever choice of generator can work with Resolution IV.

Designs to optimize robustness

- Noise mitigation relies on interactions between control and noise factors.
- ► Typically, a Resolution V design is needed.
- The noise×control interactions are most important, so a clever choice of generator can work with Resolution IV.

In the leaf spring experiment, the generator E = BCD produced a $2_{\rm IV}^{5-1}$ design with:

- main effects clear
- BQ
- ► CQ
- DQ
- 🕨 EQ
- BC=DE
- BD=CE
- BE=CD

All the interactions with the noise factor Q (quench oil temperature) are clear.