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Location vs. Dispersion

I Sometimes we want to study the variation in the response, not the response
itself.

I Location describes the central tendency of a response
I Mean, median, mode
I All of our models so far use response = location

I Dispersion describes the spread of a response
I Range, inter-quartile range (IQR), variance, standard deviation

I Location can be studied with unreplicated or replicated designs
I Studying dispersion always requires replicates
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Studying dispersion

I The variance σ2 is the natural statistic for studying dispersion with linear
models fit by least-squares

I However, the sample variance s2 is not a good response for studying σ2

I s2 is left-censored (s2 ≥ 0)
I s2 follows a χ2 distribution, not a normal distribution

I Both problems are fixed by modeling ln s2 instead of s2

I Moreover, maximizing − ln s2 minimizes the variance, so we can keep the
same maximization-based framework used for location models



Visualizing the dispersion

farplot(disp, factors=c("B","C","D","E","Q"), response="lns2")
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Visualizing the data

farplot(data, factors=c("B","C","D","E","Q"), response="height")
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Building the model

disp_model <- lm(-lns2 ~ B+C+D+E+Q +
B:Q + C:Q + D:Q + E:Q + B:C + B:D + B:E,

data=disp)

Confounding in the 25−1 design
with I=BCDE:
I main effects clear
I BQ
I CQ
I DQ
I EQ
I BC=DE
I BD=CE
I BE=CD

show_effects(disp_model, ordered="abs")

## (Intercept) 4.93131
## B -.94543
## D:Q -.55538
## B:E -.33523
## C:Q -.2989
## B:Q .29437
## C -.28434
## B:D -.21234
## Q -.13976
## D .12375
## E -.10777
## E:Q -.06457
## B:C .00079



Factors affecting location (spring height)
daewr::halfnorm(na.omit(get_effects(model)))
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## zscore= 0.0417893 0.1256613 0.2104284 0.2967378 0.3853205 0.4770404 0.5729675 0.6744898 0.7835004 0.9027348 1.036433 1.191816 1.382994 1.644854 2.128045effp= 0.005208333 0.008541667 0.009791667 0.01354167 0.014375 0.01770833 0.02020833 0.02354167 0.026875 0.04229167 0.051875 0.08270833 0.088125 0.110625 0.1297917



Factors affecting dispersion (ln s2)
daewr::halfnorm(get_effects(disp_model))
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## zscore= 0.05224518 0.1573107 0.264147 0.3740954 0.4887764 0.6102946 0.741594 0.8871466 1.054472 1.258162 1.534121 2.036834effp= 0.0007902235 0.06457086 0.1077734 0.1237478 0.1397582 0.2123448 0.2843438 0.2943717 0.2989006 0.3352337 0.5553763 0.9454341



Final Models

height = 7.64 + 0.11B + 0.09C − 0.13Q − 0.08CQ
− ln s2 = 4.93− 0.95B

I We want to minimize process variance (maximize − ln s2), but what about
height?

I Often we have a nominal value for a response and need to balance reducing
variance with keeping the response near the nominal value.

I In this case, we set B = − and adjust the nominal value with C and Q.
I C and Q are called adjustment factors since they appear in the model for

location but not dispersion.
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Nominal-the-Best Optimization

1. Use the dispersion model to reduce variation.
2. Use adjustment factors to move the location near the nominal value.
3. If the location is too far off, repeat but reduce the variation less than before.

Why it works
Given a nominal value t for a response y , our goal (using quadratic loss) is

minE(y − t)2 = E[(y − E(y)) + (E(y)− t)]2

= Var(y) + (E(y)− t)2
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Robust Parameter Design

I Factors can be split into two groups
I Control factors can be changed easily
I Noise factors are difficult or impossible to change

I Robust Parameter Design finds settings for control factors that mitigate
variation from noise factors.

I Mitigation is achieved through noise × control interactions.
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Example: Manufacturing boxed cake mixes

I Control factors: Ingredients in the box A, . . . ,D.
I Noise factors: Controlled by the customer

I E : Egg (small or large)
I M: Milk (skim or 2%)
I T : Oven temperature (340◦–360◦F)

Controlling for egg size variation (E) using baking soda (B)

Recall the definition of Int(EB):

Int(EB) = ME(E |B+)−ME(E |B−)
2
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Mitigating noise trades optimality for robustness

Partial model for egg size E and baking soda B:

taste = . . .+ 0.2B − 0.7E + 0.4EB + . . .

When B = +
I E+⇒ taste = −0.1
I E− ⇒ taste = 0.5

When B = −
I E+⇒ taste = −1.3
I E− ⇒ taste = 0.9

What should we do?
I The optimal cake has low baking soda and instructions to use a small egg

(taste=0.9).
I If the customer uses a large egg, the taste drops a lot (-1.3).
I Using high baking soda gives a suboptimal taste (0.5 with small egg).
I Customers incorrectly using a large egg will not change taste as much (-0.1).
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Designs to optimize robustness

I Noise mitigation relies on interactions between control and noise factors.

I Typically, a Resolution V design is needed.
I The noise×control interactions are most important, so a clever choice of

generator can work with Resolution IV.

In the leaf spring experiment, the generator E = BCD produced a 25−1
IV design

with:
I main effects clear
I BQ
I CQ
I DQ
I EQ
I BC=DE
I BD=CE
I BE=CD

All the interactions with the noise factor Q (quench oil temperature) are clear.
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