Screening Designs

BIOE 498/598 PJ

Spring 2022

Why do we use screening designs?

- Optimization is expensive—many runs/factor at > 2 levels
- Too many factors waste resources
- Too few factors lead to suboptimal results

Why do we use screening designs?

- Optimization is expensive—many runs/factor at > 2 levels
- Too many factors waste resources
- Too few factors lead to suboptimal results
- **Solution:** A *screening design* tests a large number of factors
- Only active factors are carried forward for optimization

What is a screening design?

Screening designs have few runs, ideally $\leq 2 \text{ runs/factor}$.

What is a screening design?

- Screening designs have few runs, ideally $\leq 2 \text{ runs/factor}$.
- The focus is on main effects. By the Effect Hierarchy and Effect Heredity principles,

important factor \approx significant main effect

What is a screening design?

- Screening designs have few runs, ideally $\leq 2 \text{ runs/factor}$.
- The focus is on main effects. By the Effect Hierarchy and Effect Heredity principles,

important factor \approx significant main effect

We don't worry about estimates of TWIs. We're selecting factors, not interactions.

Types of screening designs

Resolution III Fractional Factorial Design

- Pro: Mirror image can clear main effects
- Con: Run size always a power of 2

Types of screening designs

Resolution III Fractional Factorial Design

- Pro: Mirror image can clear main effects
- Con: Run size always a power of 2
- PB Design
 - Pro: Run size in multiples of 4
 - Con: Complex aliasing

Types of screening designs

Resolution III Fractional Factorial Design

- Pro: Mirror image can clear main effects
- Con: Run size always a power of 2
- PB Design
 - Pro: Run size in multiples of 4
 - Con: Complex aliasing
- Definitive Screening Designs
 - Hybrid screening/optimization design. We'll discuss later!

Don't rule out Fractional Factorial Designs.

						orrans						
		8	16	32	64	128	256	512	1024	2048	4096	
							only the MA design					
number of factors	3	full										
	4	- IV	full									
	5	111	V	full								
	6	- 111	IV	VI	full							
	7	- 111	IV	IV	VII	full						
	8		IV	IV	V	VIII	full					
	9		III	IV	IV	- VI	IX	full				
	10		Ш	IV	IV	V	VI	Х	full			
	11		- 11	IV	IV	V	VI I	VII	XI	full		
	12		- 111	IV.	IV	IV.	VI	VI	VIII	XII	full	
	13		111	IV	IV	- IV	V	VI	VII	VIII	XIII	
	14			IV	IV	- IV	V	VI	VII	VIII	IX	
	15		Ξ	IV	IV	١٧	V	VI	VII	VIII	VIII	
	16			IV	IV	IV	V	VI	VI	VIII	VIII	
	17			111	IV	١V	V	VI	VI	VII	VIII	
	18			111	IV	IV	IV	VI	VI	VII	VIII	
	19			- 111	IV	IV	IV	V	VI	VII	VIII	
	20			111	IV	IV	IV	V	VI	VII	VIII	
	21			111	IV	IV	IV	V	VI	VII	VIII	
	22			111	IV	IV	IV	V	VI	VII	VIII	
	23			111	IV	IV	١V	V	VI	VII	VIII	
	24			111	IV	IV	IV	IV	VI	VI	VIII	
Res	olution	ı III up	to	31	127			factor	S.			
Resolution IV up to 32 64								160	factors.			
Rac	Resolution V up to number of fastors								22		65	
nes 0	-lut	. vi up	to nun				33		05			
Resolution vi up to number of factors: 24 34 4										48		
Firs	t desig	n is M	A up to	numb	er of f	actors						
				31	63	127	36	29	28	32	26	

number of runs

Gromping, 2014 J. Stat. Software

Workflow for Resolution III screens

- 1. Run the design
- 2. Fit the model with main effects. If you have DoF left over, add any TWIs that are **not** confounded with main effects.
- If the overall model fit is bad, or if you expected certain effects to be significant that were not, consider a second batch of runs with a mirror image design.
- 4. Drop any factors that are not important (practically or statistically).

Plackett-Burman Designs

- Discovered in 1946 while working in the British Ministry of Supply
- > Orthogonal designs, so main effects can be estimated independently
- Run sizes in multiples of 4

Plackett-Burman Designs

- Discovered in 1946 while working in the British Ministry of Supply
- Orthogonal designs, so main effects can be estimated independently
- Run sizes in multiples of 4
- Both PB designs and FF designs are Orthogonal Arrays
 PB = FF when N = 2^k

Plackett-Burman Designs

- Discovered in 1946 while working in the British Ministry of Supply
- > Orthogonal designs, so main effects can be estimated independently
- Run sizes in multiples of 4
- Both PB designs and FF designs are Orthogonal Arrays
 PB = FF when N = 2^k
- PB designs have complex aliasing. Every ME is partially confounded with all TWIs.

Creating a PB design (up to 23 factors)

1. Start with the first run from the following table.

Runs	Factor Levels
12	++-++++-
20	++++++-+-+++-
24	+++++-+-+++++

- 2. Cycle the factor levels by one to get run #2. Repeat for 11, 19, or 23 runs.
- 3. Set the final run to all low (-).
- 4. If the number of factors k is less than the number of runs, select the first k columns.

Workflow for PB designs

- 1. Run the design.
- 2. Fit a model with main effects plus an effect for any unused column in the design.
- 3. Optional: Perform subset regression to identify factors that appear frequently in smaller models with good predictive power.
- 4. Drop any factors that are not important (practically or statistically).
- 5. If only a small number of factors remain, try refitting the small model.

Example PB design: Cast fatigue

This design includes 7 factors; however, effects are estimated for all columns. The last 4 "factors" are interactions with complex aliasing.

To replicate or not to replicate?

- Many screening designs are saturated there are no DoF to estimate confidence intervals for the parameters.
- The number of estimable factors is bounded by the rank of the model matrix. Replicates do not changes the rank.
- If you don't replicate the design, you can select factors based on the magnitude of the effects alone (half-normal plot).
 - Remember that half-normal plots work better as the number of factors grows.

To replicate or not to replicate?

- Many screening designs are saturated there are no DoF to estimate confidence intervals for the parameters.
- The number of estimable factors is bounded by the rank of the model matrix. Replicates do not changes the rank.
- If you don't replicate the design, you can select factors based on the magnitude of the effects alone (half-normal plot).
 - Remember that half-normal plots work better as the number of factors grows.
- Replicating a Resolution III Design
 - Consider a mirror-image instead. This will give clear main effects.
 - Check if you can afford a Resolution IV instead. This gives clear main effects and a confounding structure.
- Replicating a PB Design
 - Replicating the design will help you estimate the "pure error".
 - You can "move up" to a larger PB design to get extra runs. This won't estimate pure error, but you can add more confounded effects to the model to improve the estimates.