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Process Improvement

Design of Experiments is focused on process characterization.

I Which factors affect the response?

I How large are the effects?

Process improvement asks “what factor settings yield the optimal
response?”

collect data build model optimize
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Process improvement by steepest ascent

I Rarely are the initial factor ranges optimal. In practice we can be far
away.

I The method of steepest ascent moves us quickly toward regions
of better response.

I The emphasis is on moving quickly using few runs and first order
models.
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The Design Space

Runs in a factorial design sample the corners of a unit cube.
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Model Distance

I A linear model averages over runs at all corners of the design space.

I The model’s predictions are best at the center point.

I As we move away from the center point, we switch from
interpolating to extrapolating.

I The design radius measures how far we are from the center point.
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design space

r=1.414

r =
√

2 ≈ 1.414 touches the
factorial points
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First-order response surfaces

Consider the first-order linear model (without interactions)

y = 20 + 3.6x1 − 1.8x2
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We want to move “uphill” to
improve the response using the
method of steepest ascent.

If our goal was to minimize the
response, we use steepest descent by

1. Moving opposite of the uphill
direction, or

2. Multiplying the response by −1.
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Finding the ascent direction for first-order models

Let’s compute the partial derivatives along each factor’s dimension.

∂y

∂x1
=

∂

∂x1
(20 + 3.6x1 − 1.8x2) = 3.6

∂y

∂x2
=

∂

∂x2
(20 + 3.6x1 − 1.8x2) = −1.8

Two things to note:

1. The rate of ascent along each direction is simply the effect size βi .

2. The rate of change is different for the two dimensions. For every
step of unit length along x1 we must move −1.8/3.6 = −1/2 units
along x2.
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Standardized step sizes for steepest ascent

Consider the general first-order model

y = β0 + β1x1 + β2x2 + · · ·+ βnxn

1. Find the effect size with the largest magnitude. We’ll call this βj
and the associated factor xj .

2. Choose a step size (in coded units) along this dimension, called ∆xj .

3. For all other dimensions i 6= j , the step size is

∆xi =
βi
βj

∆xj

Example: y = 20 + 3.6x1 − 1.8x2.

1. |3.6| > | − 1.8|, so we standardize using x1 (j ≡ 1).

2. Let ∆x1 = 1.

3. ∆x2 = β2

β1
∆x1 = −1.8

3.6 (1) = −0.5
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Why standardize step sizes?

Uniform steps give uniform
differences in design radii.

∆x1
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3∆x1
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2r

3r

A standardized step of 1 always
defines a point on the design space

boundary.

∆x1 = 1
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How far do we go?

I A first order model predicts the
response will increase forever.

I We perform additional runs at
every step along the ascent
path.

I The first run is close to the
center to confirm the system
behaves as expected.

I Eventually the actual response
will stop increasing.

I When the response drifts, we
use the best response location
as the center for a new set of
experiments.

design distance
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What about interactions?

Models with interactions have curved paths of steepest ascent since the
gradient changes with x .

y = β0 + β1x1 + β2x2 + β12x1x2

∇y =

(
∂y
∂x1
∂y
∂x2

)
=

(
β1 + β12x2

β2 + β12x1

)

We can follow this path by integrating: xk+1 = xk + (∇y)∆x .

However, in practice we usually ignore the interactions.

I The model will often break down before the curvature becomes
significant.

I We rarely have enough runs in the initial design to identify
interactions.
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When is a first order model not good enough?

I The FF designs used for process improvement are usually augmented
by center points — repeated runs at the design center (0, 0).

I Center points serve two purposes:

1. Estimate the pure error via the standard deviation of the repeated
runs.

2. Test for lack of fit to detect curvature.
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Testing for lack of fit due to curvature

We want to compare the degree of curvature to the uncertainty (pure
error) in our center points. We compare using a sum-of-squares approach.

1. ȳcenter = mean response of the ncenter center points
ȳfact = mean response of the nfact factorial points

2.

SScurve =
nfactncenter(ȳfact − ȳcenter)

2

nfact + ncenter
, DF(SScurve) = 1

3.
SSerror =

∑
center
points

(yi − ȳcenter)
2, DF(SSerror) = ncenter − 1

4.

Fcurve =
SScurve/DF(SScurve)

SSerror/DF(SSerror)
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1. ȳcenter = mean response of the ncenter center points
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Example: Testing for curvature (Myers 2009)

1. ȳfact = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425
ȳcenter = (40.3+40.5+40.7+40.2+40.6)/5 = 40.46

2.

SScurve =
4× 5× (40.425− 40.46)2

4 + 5
= 0.0026

3.

SSerror = (40.3− 40.46)2 + · · ·+ (40.6− 40.46)2

= 0.172

4.

Fcurve =
0.0026/1

0.172/(5− 1)
= 0.0605

temp time yield

− − 39.3
− + 40.0
+ − 40.9
+ + 41.5

0 0 40.3
0 0 40.5
0 0 40.7
0 0 40.2
0 0 40.6

pf(0.0605, 1, 4, lower.tail=FALSE) → p < 0.818.
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The steepest ascent method

1. Run a FF design augmented with replicated center points.

2. Fit a first order model and check for lack of fit.
I If significant lack of fit, switch to Response Surface Methodology.

3. Perform runs along the steepest ascent path until the response
diminishes.

4. Go to (1) and repeat using the location of maximum response as the
new center point.
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