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Last time: The method of steepest ascent

◮ Begin with a FF+CP design.

◮ Follow path of steepest ascent until the
model breaks.

◮ New FF+CP; repeat steepest ascent.

◮ Stop when model detects lack of fit.

◮ Today: Fitting a model to a curved
response surface.
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◮ The FF designs used for process improvement are usually augmented
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ȳfact = mean response of the nfact factorial points

2.

SScurve =
nfactncenter(ȳfact − ȳcenter)
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Testing for lack of fit due to curvature

We want to compare the degree of curvature to the uncertainty (pure
error) in our center points. We compare using a sum-of-squares approach.

1. ȳcenter = mean response of the ncenter center points
ȳfact = mean response of the nfact factorial points

2.

SScurve =
nfactncenter(ȳfact − ȳcenter)
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nfact + ncenter
, DF(SScurve) = 1

3.
SSerror =

!

center
points

(yi − ȳcenter)
2, DF(SSerror) = ncenter − 1

4.

Fcurve =
SScurve/DF(SScurve)

SSerror/DF(SSerror)
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ȳcenter = (40.3+40.5+40.7+40.2+40.6)/5 = 40.46

temp time yield

− − 39.3
− + 40.0
+ − 40.9
+ + 41.5

0 0 40.3
0 0 40.5
0 0 40.7
0 0 40.2
0 0 40.6



Example: Testing for curvature (Myers 2009)
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1. ȳfact = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425
ȳcenter = (40.3+40.5+40.7+40.2+40.6)/5 = 40.46

2.
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pf(0.0605, 1, 4, lower.tail=FALSE) → p < 0.818.
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The steepest ascent method

1. Run a FF design augmented with replicated center points.

2. Fit a first order model and check for lack of fit.

◮ If significant lack of fit, switch to Response Surface Methodology.

3. Perform runs along the steepest ascent path until the response diminishes.

4. Go to (1) and repeat using the location of maximum response as the new
center point.

5. Switch to a curved model and Response Surface Methodology (RSM).
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Fitting models with curvature

◮ We need two things to model a curved response surfaces:

1. A model that is flexible enough to curve.
2. Data that can detect the curvature.

◮ The optimal operating conditions correspond to a maximum in the
response surface.

◮ We need models that can contain maxima.

◮ FO + TWI models are curved, but are rarely bounded.

y = 20 + 3.6x1 − 1.8x2 − 0.6x1x2

Set x2 = 0, then y → ∞ as x1 → ∞.
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Nonlinear response surfaces

◮ The true model for any system is a general nonlinear function

y = f (x1, x2, . . . , xk)

◮ If you know f for your system, congrats! Fit its parameters with
regression and use it.

◮ Usually we don’t know f , so we approximate it with a simpler function.

◮ We are not claiming that f is a particular shape. Rather, we claim that
an approximation is “good enough” over our domain of interest.
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◮ In general we will have k factors and the quadratic approximation will be
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◮ This model has 1 + 2k + k(k − 1)/2 parameters, so RSM designs must
have at least this many runs.


