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Approximating f with a general quadratic
Let's find the second-order Taylor series of f(xi, x2) centered at zero:
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» The function f and its derivatives are unknown, so we fit the
parameters 3 with a linear model.

» In general we will have k factors and the quadratic approximation
will be

y = BO + Z /BIXI + Z /BHX + Z Z ﬁquX_/
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» This model has 1 + 2k 4+ k(k — 1)/2 parameters, so RSM designs
must have at least this many runs.
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» Factorial points alone estimates the FO and TWI terms. The core
must be Resolution V or higher.
» Axial points allow estimation of the PQ terms. Without axial points
we could only estimate the sum of all PQ terms.
» CCDs have a pair of axial runs for each factor:
> One factor is set to +«
> All other factors are set to 0.
» Center points estimate pure error and help (some) with PQ terms.
» To build a CCD you need to decide:

1. The size of the FF core
2. The number of center runs
3. The value of «
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Uniform precision

» A model has uniform precision if the variance at design radius 1 is
the same as at the center.
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Scaled Variance

» Choosing the correct number of center points in a CCD ensures
uniform precision.
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Rotatable designs

» Models are most precise at the center of the design.

> |deally, the change in precision should be independent of the
direction we move away from the center.

Fig. 2. Variance contours for some 2 dimensional designs

Image from Box and Hunter 1957.

» Designs where the variance only depends on the radius are called
rotatable designs.

» A CCD with F factorial points is rotatable when a = v/F.



Rotatable, uniform precision CCDs

factors (k) 2 3 4 5 5—-1 6
factorial points 4 8 16 32 16 64
axial points 4 6 8 10 10 12
center points 5 6 7 10 6 15
axial distance (o) 1.414 1.682 2.000 2.378 2.000 2.828

factors (k) 6—1 7 7-1 8 8—1 8-2
factorial points 32 128 64 256 128 64
axial points 12 14 14 16 16 16
center points 9 21 14 28 20 13

axial distance (o) 2.378 3.364 2.828 4.000 3.364 2.828
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Each factor in the CCD will be set at five levels:
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Unlike a 2-level design, the coded units in a CCD have meaning!
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A = center(A) + range(A)
2

1—(-32)
2(1.68)
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Let's say we're designing a combination screening of three drugs. The
absolute widest concentration range we can use for drug A is [—3.2,1.0]
on a log;y-1tM scale. What are the five levels assuming a full-factorial

CCD?
F=22=8=a=+v8=168

A = center(A) + raLe(A)[code]
2«
B 1-(-3.2)
= 711 + W[code]
code: —« -1 0 1 «

logyo-uM:  —32 —24 —11 02 1.0



