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Surrogate Optimization



Approximating f with a general quadratic
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◮ The function f and its derivatives are unknown, so we fit the
parameters β with a linear model.
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◮ This model has 1 + 2k + k(k − 1)/2 parameters, so RSM designs
must have at least this many runs.
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◮ Factorial points alone estimates the FO and TWI terms. The core
must be Resolution V or higher.

◮ Axial points allow estimation of the PQ terms. Without axial points
we could only estimate the sum of all PQ terms.

◮ CCDs have a pair of axial runs for each factor:
◮ One factor is set to ±α
◮ All other factors are set to 0.

◮ Center points estimate pure error and help (some) with PQ terms.

◮ To build a CCD you need to decide:

1. The size of the FF core
2. The number of center runs
3. The value of α
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Uniform precision

◮ A model has uniform precision if the variance at design radius 1 is
the same as at the center.

◮ Choosing the correct number of center points in a CCD ensures
uniform precision.
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Rotatable designs

◮ Models are most precise at the center of the design.

◮ Ideally, the change in precision should be independent of the
direction we move away from the center.

Image from Box and Hunter 1957.

◮ Designs where the variance only depends on the radius are called
rotatable designs.

◮ A CCD with F factorial points is rotatable when α = 4
√
F .



Rotatable, uniform precision CCDs

factors (k) 2 3 4 5 5− 1 6
factorial points 4 8 16 32 16 64
axial points 4 6 8 10 10 12
center points 5 6 7 10 6 15
axial distance (α) 1.414 1.682 2.000 2.378 2.000 2.828

factors (k) 6− 1 7 7− 1 8 8− 1 8− 2
factorial points 32 128 64 256 128 64
axial points 12 14 14 16 16 16
center points 9 21 14 28 20 13
axial distance (α) 2.378 3.364 2.828 4.000 3.364 2.828
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Each factor in the CCD will be set at five levels:

−α − 1 0 1 α

Unlike a 2-level design, the coded units in a CCD have meaning!
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Coding the CCD

Let’s say we’re designing a combination screening of three drugs. The
absolute widest concentration range we can use for drug A is [−3.2, 1.0]
on a log10-µM scale. What are the five levels assuming a full-factorial
CCD?

F = 23 = 8 ⇒ α =
4
√
8 = 1.68

A = center(A) +
range(A)

2α
[code]

= −1.1 +
1− (−3.2)

2(1.68)
[code]

code: −α −1 0 1 α
log10-µM: −3.2 −2.4 −1.1 0.2 1.0


