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Second-order response surfaces: Saddle Point




Finding the response stationary point
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Finding the response stationary point
The general second-order linear model is
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Where is the stationary point?

The argmin, argmax, or inflection point of a saddle is called the
stationary point (x,).



Where is the stationary point?

The argmin, argmax, or inflection point of a saddle is called the
stationary point (x,).

9 _ 9
dx  Ox
=b +2Bx

(bo +x"b + x"Bx)



Where is the stationary point?

The argmin, argmax, or inflection point of a saddle is called the
stationary point (x,).

9 _ 9
dx  Ox
=b +2Bx

(bo +x"b + x"Bx)

Solving for where the derivative equals zero:

1
b+2Bx, =0=x, = —§B_1b



What is the response at the stationary point?
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the main effects.
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Ys = bo + XsTb + XSTBXS
1
=by+xs'b+ (—2bTB1) Bx,

1
= by + §x3Tb

The response at the stationary point only depends on the intercept and
the main effects.

Imagine a downward facing parabola 3
y=3—(zx—3)>% 0

>
The argmax is x5 = 3 with response -3
ys =3 (3-3)° -6

=3-02% :



Chemical Process Example (Myers 2016)

A B
Observation Temperature (°C) &, Conc. (%) &, X, Xy y
1 200 15 -1 -1 43
2 250 15 1 -1 78
3 200 25 -1 1 69
4 250 25 1 1 73
5 189.65 20 —1.414 0 48
6 260.35 20 1.414 0 76
7 225 12.93 0 -1.414 65
8 225 27.07 0 1414 74
9 225 20 0 0 76
10 225 20 0 0 79
11 225 20 0 0 83
12 225 20 0 0 81
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Chemical Process Example (Myers 2016)
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Where is the stationary point?

y = 79.75 4+ 10.18z; + 4.2225 — 8.50x% — 5.25235 — 7.75zx1 x5

10.12 —8.50 —3.875
bp =79.75, b= ( 422) , B= (—3.875 —5.25)

Xy = f}Bflb
2
B _} —0.1773 0.1309 10.12
~ 2\ 0.1309 —0.2871 4.22
[ 0.6264
— \—0.0604
Temperature = 225 + 25z 5 = 225 + 25(0.6264) = 240°C
Concentration = 20 4 5z s = 20 + 5(—0.0604) = 19.7%



Visual confirmation of stationary point
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When does x produce a maximum?

» The stationary point can be an argmax, argmin, or location of a
saddle point.
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matrix B.
> All A\; < 0 — maximum
> All A\; > 0 — minimum
> Indeterminate signs — saddle point



When does x produce a maximum?

» The stationary point can be an argmax, argmin, or location of a
saddle point.
» The type of extremum is determined by the eigenvalues ();) of the
matrix B.
> All A\; < 0 — maximum
> All A\; > 0 — minimum
> Indeterminate signs — saddle point

» In the previous example, A\; = —11.0769 and Ay = —2.6731, so x; is
an argmax.



*Canonical analysis

We can simplify analysis by shifting our coordinates to the stationary
point and rotating the axes to align with the eigenvectors.
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*Canonical analysis

We can simplify analysis by shifting our coordinates to the stationary
point and rotating the axes to align with the eigenvectors.

Let V be a matrix with columns equal to the eigenvectors of B, and let

Z=X— X

w=V'g

The response anywhere can be defined in terms of the canonical vector
w an a diagonal matrix of eigenvalues A,

Y=y +w Aw
or, more simply,

k
y=ys+ Y Aw}
i=1



*Canonical analysis

w=V'(x—-x,)

k
y=ys+ Y Aw]
i=1

X2

xzr‘,-.—

N

N ——

w3

x1,s

1



