
Surrogate Optimization:
Gaussian Process Regression

BIOE 498/598 PJ

Spring 2022



Surrogate Optimization

I Assume we are trying to optimize a function f that is expensive to
evaluate.

I Instead, we use evaluations of f to build a surrogate model f̃ that is cheap
to evaluate.

I We optimize f̃ to find good candidates for evaluation by f .

design X y surrogate f̃ x∗
space-filling f(X) GP(X, y)

sequential design



Gaussian Process Regression

I For linear models, we decide a priori what shape the response surface will
take.

I Linear regression estimates the parameters βi using noisy data.
I Gaussian Process Regression (GPR) assumes the covariance between the

data have a particular shape.
I The covariance function is called the kernel.



Our kernel of choice

I There are many kernels used for GPR.
I We will use the inverse exponentiated squared Euclidean distance kernel:

Σ(x, x′) = exp{−‖x− x′‖2}.

I Note that Σ(x, x) = 1 and Σ(x, x′) < 1 if x 6= x′.

−3 −1 1 2 3

0.
0

0.
4

0.
8

x

Σ(
x,

x′
)



Our kernel of choice

I There are many kernels used for GPR.
I We will use the inverse exponentiated squared Euclidean distance kernel:

Σ(x, x′) = exp{−‖x− x′‖2}.

I Note that Σ(x, x) = 1 and Σ(x, x′) < 1 if x 6= x′.

−3 −1 1 2 3

0.
0

0.
4

0.
8

x

Σ(
x,

x′
)



Using the covariance function for interpolation

−3 −1 1 2 3

0.
0

0.
4

0.
8

x

Σ(
x,

x′
)



How do we make predictions with GPR?

I Let’s start with a space-filling design Xn and assume we measured the
responses yn at each point in the design.

I Using our kernel function, we can calculate the covariance among the points
in the design set

Σn = Σ(Xn, Xn)

I We want to find the response y at a new, unmeasured point x. Using some
identities for multivariate normal distributions,

y(x) = Σ(x,Xn)Σ−1
n yn.

I GPR assumes that y(x) is itself normally distributed with variance

σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(x,Xn)>.



How do we make predictions with GPR?

I Let’s start with a space-filling design Xn and assume we measured the
responses yn at each point in the design.

I Using our kernel function, we can calculate the covariance among the points
in the design set

Σn = Σ(Xn, Xn)
I We want to find the response y at a new, unmeasured point x. Using some

identities for multivariate normal distributions,

y(x) = Σ(x,Xn)Σ−1
n yn.

I GPR assumes that y(x) is itself normally distributed with variance

σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(x,Xn)>.



How do we make predictions with GPR?

I Let’s start with a space-filling design Xn and assume we measured the
responses yn at each point in the design.

I Using our kernel function, we can calculate the covariance among the points
in the design set

Σn = Σ(Xn, Xn)
I We want to find the response y at a new, unmeasured point x. Using some

identities for multivariate normal distributions,

y(x) = Σ(x,Xn)Σ−1
n yn.

I GPR assumes that y(x) is itself normally distributed with variance

σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(x,Xn)>.



Let’s try it!

First, let’s make a helper function for computing the covariance between two
sets of design points.
Sigma <- function(X1,X2) {

X1 <- as.matrix(X1)
X2 <- as.matrix(X2)
D <- plgp::distance(X1,X2)
exp(-D)

}



Let’s make some training data

par(mar=rep(0,4))
Xn <- matrix(seq(-3,3,0.8), ncol=1)
yn <- sin(Xn[ ,1])
plot(Xn,yn)



And then interpolate!

X <- seq(-3.25,3.15,0.1)
y = Sigma(X,Xn) %*% solve(Sigma(Xn,Xn)) %*% yn
par(mar=rep(0,4))
plot(Xn,yn)
points(X,y, col="blue", cex=0.5)



What about the variance?

s2 <- Sigma(X,X) - Sigma(X,Xn) %*%
solve(Sigma(Xn,Xn)) %*% t(Sigma(X,Xn))

par(mar=rep(0,4))
plot(Xn,yn, ylim=c(-1.3,1.3))
points(X,y, col="blue", cex=0.5)
lines(X, y + qnorm(0.05, 0, sqrt(diag(s2))), lty=2, col=2)
lines(X, y + qnorm(0.95, 0, sqrt(diag(s2))), lty=2, col=2)



Why not use GPR for everything?

I Data intensive. Since GPR does not use a parametric model, the entire
shape of the response surface must come from data. GPR generally requires
more data than a linear model.

I Computationally intensive. Training a GPR requires inverting Σn, an
n× n dense matrix. Practically, this limits GPR to 1,000’s or a few
10,000’s of points.

I Interpolation only. GPR has no idea what the response should look like
beyond the training data. GPR requires a space-filling design that covers
the entire search region.

Still, for global search with (relatively) expensive experiments, GPR remains a
flexible and powerful method.



Why not use GPR for everything?

I Data intensive. Since GPR does not use a parametric model, the entire
shape of the response surface must come from data. GPR generally requires
more data than a linear model.

I Computationally intensive. Training a GPR requires inverting Σn, an
n× n dense matrix. Practically, this limits GPR to 1,000’s or a few
10,000’s of points.

I Interpolation only. GPR has no idea what the response should look like
beyond the training data. GPR requires a space-filling design that covers
the entire search region.

Still, for global search with (relatively) expensive experiments, GPR remains a
flexible and powerful method.


