Surrogate Optimization:
Gaussian Process Regression

BIOE 498/598 PJ

Spring 2022

Surrogate Optimization

» Assume we are trying to optimize a function f that is expensive to
evaluate.

» Instead, we use evaluations of f to build a surrogate model f that is cheap
to evaluate.

> We optimize f to find good candidates for evaluation by f.

space-fillin

sequential design

Gaussian Process Regression

» For linear models, we decide a priori what shape the response surface will
take.

» Linear regression estimates the parameters 3; using noisy data.

> Gaussian Process Regression (GPR) assumes the covariance between the
data have a particular shape.

» The covariance function is called the kernel.

Our kernel of choice
» There are many kernels used for GPR.
» We will use the inverse exponentiated squared Euclidean distance kernel:
S(z,2") = exp{—|z — 2'||*}.

> Note that X(z,z) =1 and Z(z,z’') < 1 if z £ .

Our kernel of choice

» There are many kernels used for GPR.
» We will use the inverse exponentiated squared Euclidean distance kernel:

Sz, a) = exp{—|x —|}.

> Note that X(z,z) =1 and Z(z,z’') < 1 if z £ .

2(x,x")

. &

00 04 0.8

Using the covariance function for interpolation

2(x,x")

00 04 0.8

How do we make predictions with GPR?

» Let's start with a space-filling design X,, and assume we measured the
responses y, at each point in the design.
» Using our kernel function, we can calculate the covariance among the points
in the design set
Yn = X(Xn, Xn)

How do we make predictions with GPR?

» Let's start with a space-filling design X,, and assume we measured the

responses y, at each point in the design.
» Using our kernel function, we can calculate the covariance among the points

in the design set
Yn = X(Xn, Xn)

» We want to find the response y at a new, unmeasured point z. Using some
identities for multivariate normal distributions,

y(z) = X(, Xn)zv_zlyn-

How do

we make predictions with GPR?

Let's start with a space-filling design X,, and assume we measured the
responses y, at each point in the design.
Using our kernel function, we can calculate the covariance among the points
in the design set

Yn = X(Xn, Xn)

We want to find the response y at a new, unmeasured point z. Using some
identities for multivariate normal distributions,

y(z) = X(a, Xn)zv_zlyn-
GPR assumes that y(z) is itself normally distributed with variance

o?(z) = 2(x,z) — B(z, Xn) S0 ' Sz, X)) .

Let's try it!

First, let's make a helper function for computing the covariance between two
sets of design points.

Sigma <- function(X1,X2) {
X1 <- as.matrix(X1)
X2 <- as.matrix(X2)
D <- plgp::distance(X1,X2)
exp(-D)

Let's make some training data

par(rep(0,4))

Xn <- matrix(seq(-3,3,0.8), 1)
yn <- sin(Xn[,11)
plot(Xn,yn)
O
O
O
O

And then interpolate!

X <- seq(-3.25,3.15,0.1)
y = Sigma(X,Xn) %’ solve(Sigma(Xn,Xn)) %*% yn
par(rep(0,4))

plot (Xn,yn)
points(X,y, "blue", 0.5)
o
) <)
Q)
o <)
[o
o o
o
o g
o
° <)
) 0°
o)
)
%0000

What about the variance?

s2 <- Sigma(X,X) - Sigma(X,Xn) %*%
solve(Sigma(Xn,Xn)) %% t(Sigma(X,Xn))

par(rep(0,4))
plot(Xn,yn, c(-1.3,1.3))
points(X,y, "blue", 0.5)
lines(X, y + gnorm(0.05, 0, sqrt(diag(s2))), 2, 2)
lines(X, y + gnorm(0.95, 0, sqrt(diag(s2))), 2, 2)
/_~\
’ AR
RICCTI YN
PR LA Vo N
’ o, N OO\
/°°, N
‘o0 ’ ~_ -
I° //
\) -
. -8
\ , O/’
o - - /7 O
~ o /
IR 0%
vo M 10 7
\ OO\\ /0/’
\\ O\ ,’—;Q’
N o - - 7 o7/

Why not use GPR for everything?

» Data intensive. Since GPR does not use a parametric model, the entire
shape of the response surface must come from data. GPR generally requires
more data than a linear model.

» Computationally intensive. Training a GPR requires inverting ¥,,, an
n X n dense matrix. Practically, this limits GPR to 1,000's or a few
10,000's of points.

> Interpolation only. GPR has no idea what the response should look like
beyond the training data. GPR requires a space-filling design that covers
the entire search region.

Why not use GPR for everything?

» Data intensive. Since GPR does not use a parametric model, the entire
shape of the response surface must come from data. GPR generally requires
more data than a linear model.

» Computationally intensive. Training a GPR requires inverting ¥,,, an
n X n dense matrix. Practically, this limits GPR to 1,000's or a few
10,000's of points.

> Interpolation only. GPR has no idea what the response should look like
beyond the training data. GPR requires a space-filling design that covers
the entire search region.

Still, for global search with (relatively) expensive experiments, GPR remains a
flexible and powerful method.

