
Surrogate Optimization:
GPR Hyperparameters

BIOE 498/598 PJ

Spring 2022

Gaussian Process Regression: nonparametric Bayesian optimization

I We assume the inverse exponentiated squared Euclidean distance kernel:

Σ(x, x′) = exp{−‖x− x′‖2}.

I Given training data (Xn, yn), predictions y at a new point x are

y(x) = Σ(x,Xn)Σ−1
n yn.

I The variance σ2 at the points x can also be computed:

σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(x,Xn)>.

I GPR is Bayesian: the kernel (prior) is updated with data (Xn, yn) to
compute posterior estimates of (x, y).

I GPR is nonparametric since the “Kriging” equations for y(x) and σ2(x) do
not contain parameters.

I In practice, we can use a few hyperparameters to improve the performance
of GPR.

Gaussian Process Regression: nonparametric Bayesian optimization

I We assume the inverse exponentiated squared Euclidean distance kernel:

Σ(x, x′) = exp{−‖x− x′‖2}.

I Given training data (Xn, yn), predictions y at a new point x are

y(x) = Σ(x,Xn)Σ−1
n yn.

I The variance σ2 at the points x can also be computed:

σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(x,Xn)>.

I GPR is Bayesian: the kernel (prior) is updated with data (Xn, yn) to
compute posterior estimates of (x, y).

I GPR is nonparametric since the “Kriging” equations for y(x) and σ2(x) do
not contain parameters.

I In practice, we can use a few hyperparameters to improve the performance
of GPR.

Gaussian Process Regression: nonparametric Bayesian optimization

I We assume the inverse exponentiated squared Euclidean distance kernel:

Σ(x, x′) = exp{−‖x− x′‖2}.

I Given training data (Xn, yn), predictions y at a new point x are

y(x) = Σ(x,Xn)Σ−1
n yn.

I The variance σ2 at the points x can also be computed:

σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(x,Xn)>.

I GPR is Bayesian: the kernel (prior) is updated with data (Xn, yn) to
compute posterior estimates of (x, y).

I GPR is nonparametric since the “Kriging” equations for y(x) and σ2(x) do
not contain parameters.

I In practice, we can use a few hyperparameters to improve the performance
of GPR.

Scale

I GPR makes predictions by drawing from a multivariate normal distribution.
This mean most predictions will lie in [−2, 2].

I For our sinusoidal example, the response was in [−1, 1], so we never noticed
a problem. But not all problems have nice scaling.

I Previously, the covariance matrix Σ was defined based on a correlation
function

C(x, x′) = exp{−‖x− x′‖2}.
I Let’s scale the correlation function by a hyperparameter τ2:

Σ = τ2C(x, x′) = τ2 exp{−‖x− x′‖2}

I Where do we get τ2? From the data! The maximum likelihood estimate is

τ̂2 = y>n C
−1
n yn

n
, Cn ≡ C(Xn, Xn)

I We’ll let a software package handle these estimates for us.

Scale

I GPR makes predictions by drawing from a multivariate normal distribution.
This mean most predictions will lie in [−2, 2].

I For our sinusoidal example, the response was in [−1, 1], so we never noticed
a problem. But not all problems have nice scaling.

I Previously, the covariance matrix Σ was defined based on a correlation
function

C(x, x′) = exp{−‖x− x′‖2}.
I Let’s scale the correlation function by a hyperparameter τ2:

Σ = τ2C(x, x′) = τ2 exp{−‖x− x′‖2}

I Where do we get τ2? From the data! The maximum likelihood estimate is

τ̂2 = y>n C
−1
n yn

n
, Cn ≡ C(Xn, Xn)

I We’ll let a software package handle these estimates for us.

Scale

I GPR makes predictions by drawing from a multivariate normal distribution.
This mean most predictions will lie in [−2, 2].

I For our sinusoidal example, the response was in [−1, 1], so we never noticed
a problem. But not all problems have nice scaling.

I Previously, the covariance matrix Σ was defined based on a correlation
function

C(x, x′) = exp{−‖x− x′‖2}.
I Let’s scale the correlation function by a hyperparameter τ2:

Σ = τ2C(x, x′) = τ2 exp{−‖x− x′‖2}

I Where do we get τ2? From the data! The maximum likelihood estimate is

τ̂2 = y>n C
−1
n yn

n
, Cn ≡ C(Xn, Xn)

I We’ll let a software package handle these estimates for us.

Nugget

I Our correlation function C(x, x′) assumes that y(x′)→ y(x) as x′ → x.
I GPR always “connects the dots”. If we measures y(x), the GPR prediction

at x will be the measured value.
I With real experiments, our measurements of y will be noisy, and we want

GPR to smooth over this noise. Also, what if we made repeated
measurements at y? What will the prediction be?

I Solution: Break the perfect correlation in C by injecting a small amount of
white noise.

I Method: Add a “nugget” g to the diagonal of Σn:

Σn = τ2[C(Xn, Xn) + gI].

Lengthscale

I GPR requires the correlation function C(x, x′) to quantify how quickly the
relationship between points decays.

I The lengthscale of decay can also be tuned by adding a hyperparameter d:

C(x, x′) = exp
{
−‖x− x

′‖2

d

}
.

−3 −1 1 2 3

0.
0

0.
4

0.
8

x

C
(x

,x
′)

d=1d=2

Putting it all together

I If we only want to include a scale τ2, we can estimate its value using

τ̂2 = y>n C
−1
n yn

n
.

I Since the nugget g and the lengthscale d alter Cn, all three of the
parameters must be estimated simultaneously by optimization.

I Note that this optimization requires inverting Cn at each iteration. Tuning
a GPR model can be more expensive than training it!

I Now is a good time to offload all the computation to a GPR library.

Putting it all together

I If we only want to include a scale τ2, we can estimate its value using

τ̂2 = y>n C
−1
n yn

n
.

I Since the nugget g and the lengthscale d alter Cn, all three of the
parameters must be estimated simultaneously by optimization.

I Note that this optimization requires inverting Cn at each iteration. Tuning
a GPR model can be more expensive than training it!

I Now is a good time to offload all the computation to a GPR library.

Putting it all together

I If we only want to include a scale τ2, we can estimate its value using

τ̂2 = y>n C
−1
n yn

n
.

I Since the nugget g and the lengthscale d alter Cn, all three of the
parameters must be estimated simultaneously by optimization.

I Note that this optimization requires inverting Cn at each iteration. Tuning
a GPR model can be more expensive than training it!

I Now is a good time to offload all the computation to a GPR library.

The laGP library

We will use four functions from the laGP library:
I newGP: trains a GPR model with initial data.
I jmleGP: tunes the model’s hyperparameters jointly by maximum likelihood

estimation.
I predGP: predicts the response at new inputs.
I deleteGP: deletes the model and releases memory when we’re done.

laGP in practice: Initial training

Let’s start with our previous training data (Xn, yn).
Xn <- matrix(seq(-3,3,0.8), ncol=1)
yn <- sin(Xn[,1])

Now we train a GPR model with laGP.
library(laGP)
gp <- newGP(Xn, yn, d=1, g=0.1*var(yn), dK=TRUE)

I We initially set the lengthscale d to 1.
I Our initial guess for the nugget g is 10% of the variance in the response.
I dK=TRUE makes derivatives of the kernel available so we can use MLE for

hyperparameter tuning.

laGP in practice: Initial training

Let’s start with our previous training data (Xn, yn).
Xn <- matrix(seq(-3,3,0.8), ncol=1)
yn <- sin(Xn[,1])

Now we train a GPR model with laGP.
library(laGP)
gp <- newGP(Xn, yn, d=1, g=0.1*var(yn), dK=TRUE)

I We initially set the lengthscale d to 1.
I Our initial guess for the nugget g is 10% of the variance in the response.
I dK=TRUE makes derivatives of the kernel available so we can use MLE for

hyperparameter tuning.

laGP in practice: Hyperparameter tuning

mle <- jmleGP(gp, drange=c(0,2), grange=c(0,var(yn)))

I jmleGP tunes both the lengthscale and nugget. The scale τ2 is tuned
automatically.

I drange and grange are vectors of bounds for d and g.
I We want a range large enough to avoid hitting the bounds, but small enough

to make the search efficient.
I d = 2 is relatively large for our problem since −3 ≤ x ≤ 3.
I The nugget g is rarely larger than the variance of the training responses.

mle

d g tot.its dits gits
1 2 5.41316e-09 3817 3778 39

laGP in practice: Hyperparameter tuning

mle <- jmleGP(gp, drange=c(0,2), grange=c(0,var(yn)))

I jmleGP tunes both the lengthscale and nugget. The scale τ2 is tuned
automatically.

I drange and grange are vectors of bounds for d and g.
I We want a range large enough to avoid hitting the bounds, but small enough

to make the search efficient.
I d = 2 is relatively large for our problem since −3 ≤ x ≤ 3.
I The nugget g is rarely larger than the variance of the training responses.

mle

d g tot.its dits gits
1 2 5.41316e-09 3817 3778 39

laGP in practice: Prediction

X <- matrix(seq(-3.25,3.15,0.1), ncol=1)
yp = predGP(gp, X)
par(mar=rep(0,4))
plot(Xn,yn)
points(X,yp$mean, col="blue", cex=0.5)

laGP in practice: Uncertainty

s2 <- diag(yp$Sigma)
par(mar=rep(0,4))
plot(Xn,yn, ylim=c(-1.3,1.3))
points(X,yp$mean, col="blue", cex=0.5)
lines(X, yp$mean + qnorm(0.05, 0, sqrt(s2)), lty=2, col=2)
lines(X, yp$mean + qnorm(0.95, 0, sqrt(s2)), lty=2, col=2)

laGP in practice: Cleanup

The laGP model is stored in a external C library, so R cannot delete it directly.
We need to call deleteGP to avoid a memory leak.
deleteGP(gp)

Extra information: Anisotropy

I It’s assumed that the scale τ2 and nugget g are constant over the entire
search space.

I The lengthscale d may not be. In particular, d could be different for each
dimension.

I Imagine optimizing reaction yield based on time, temperature, and
substrate. Small changes in temperature may have big effects (small d),
while the yield may be insensitive to changes in time (large d).

I Dimensions with longer lengthscales require fewer data for prediction.

I An isotropic model assumes parameters are fixed over all dimensions. An
anisotropic model assumes parameters like d vary by dimension. Anisotropic
models are also called separable.

I For anisotropic models we estimate a vector of lengthscales, one for each
dimension. The anisotropic correlation function is

C(x, x′) = exp

{
−

m∑
k=1

(xk − x′k)2

dk

}
.

I laGP provides separate functions for anisotropic models: newGPsep,
jmleGPsep, predGPsep, deleteGPsep.

Extra information: Anisotropy

I It’s assumed that the scale τ2 and nugget g are constant over the entire
search space.

I The lengthscale d may not be. In particular, d could be different for each
dimension.

I Imagine optimizing reaction yield based on time, temperature, and
substrate. Small changes in temperature may have big effects (small d),
while the yield may be insensitive to changes in time (large d).

I Dimensions with longer lengthscales require fewer data for prediction.
I An isotropic model assumes parameters are fixed over all dimensions. An

anisotropic model assumes parameters like d vary by dimension. Anisotropic
models are also called separable.

I For anisotropic models we estimate a vector of lengthscales, one for each
dimension. The anisotropic correlation function is

C(x, x′) = exp

{
−

m∑
k=1

(xk − x′k)2

dk

}
.

I laGP provides separate functions for anisotropic models: newGPsep,
jmleGPsep, predGPsep, deleteGPsep.

Extra information: Anisotropy

I It’s assumed that the scale τ2 and nugget g are constant over the entire
search space.

I The lengthscale d may not be. In particular, d could be different for each
dimension.

I Imagine optimizing reaction yield based on time, temperature, and
substrate. Small changes in temperature may have big effects (small d),
while the yield may be insensitive to changes in time (large d).

I Dimensions with longer lengthscales require fewer data for prediction.
I An isotropic model assumes parameters are fixed over all dimensions. An

anisotropic model assumes parameters like d vary by dimension. Anisotropic
models are also called separable.

I For anisotropic models we estimate a vector of lengthscales, one for each
dimension. The anisotropic correlation function is

C(x, x′) = exp

{
−

m∑
k=1

(xk − x′k)2

dk

}
.

I laGP provides separate functions for anisotropic models: newGPsep,
jmleGPsep, predGPsep, deleteGPsep.

Summary

I For best performance, GPR models must be tuned to find a scale τ2,
nugget g, and lengthscale d that matches the training data.

I Tuning is computationally expensive. Often we tune following the initial
training and then only update (updateGP) as subsequent data are collected.

I Anisotropic models can also increase performance, but we will focus on
isotropic models in this course.

