
Surrogate Optimization:
Expected Improvement

BIOE 498/598 PJ

Spring 2022

Exploration vs. exploitation

There is a fundamental tradeoff in global optimization:
I Exploration searches areas of high uncertainty to find new regions of

interest.
I Exploitation refines existing optima by adding points to known regions of

interest.

Should we explore or exploit?
I Both. Good algorithms balance discovery and refinement.
I The best balance is an open problem. Some solutions:

I Always explore some (small) percent of the time.
I Explore early, exploit later.
I Alternate between batches of exploration and exploitation.
I Today: Combine exploration and exploitation into a single metric.

Exploration vs. exploitation

There is a fundamental tradeoff in global optimization:
I Exploration searches areas of high uncertainty to find new regions of

interest.
I Exploitation refines existing optima by adding points to known regions of

interest.

Should we explore or exploit?
I Both. Good algorithms balance discovery and refinement.
I The best balance is an open problem. Some solutions:

I Always explore some (small) percent of the time.
I Explore early, exploit later.
I Alternate between batches of exploration and exploitation.
I Today: Combine exploration and exploitation into a single metric.

A 1-D example (Gramacy 2020)
Xn <- c(1, 2, 3, 4, 12)
yn <- c(0, 1.75, 2, 0.5, -5)
gp <- newGP(matrix(Xn, ncol=1), yn, d=10, g=1e-8)
X <- seq(0, 13, length=1000)
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)

What happens when we consider uncertainty?

Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to expected improvement
(Schonlau 1997).

As usual, assume we’ve measured n responses yn at locations Xn. Define

ymax = max{y1, . . . , yn}.

The improvement in the objective at a new input x is

I(x) = max{0, y(x)− ymax}

where the maximization “floors” the improvement at zero.

The expected improvement EI(x) = E{I(x)} quantifies how much we expect
the best objective value to increase after measuring at point x.

Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to expected improvement
(Schonlau 1997).

As usual, assume we’ve measured n responses yn at locations Xn. Define

ymax = max{y1, . . . , yn}.

The improvement in the objective at a new input x is

I(x) = max{0, y(x)− ymax}

where the maximization “floors” the improvement at zero.

The expected improvement EI(x) = E{I(x)} quantifies how much we expect
the best objective value to increase after measuring at point x.

Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to expected improvement
(Schonlau 1997).

As usual, assume we’ve measured n responses yn at locations Xn. Define

ymax = max{y1, . . . , yn}.

The improvement in the objective at a new input x is

I(x) = max{0, y(x)− ymax}

where the maximization “floors” the improvement at zero.

The expected improvement EI(x) = E{I(x)} quantifies how much we expect
the best objective value to increase after measuring at point x.

Expected Improvement

The model’s predictions y(x) are stochastic. How do we estimate the expected
improvement

EI(x) = E{I(x)} = E{max[0, y(x)− ymax]}?

We can sample y(x) many times, averaging the improvement I(x) for T samples:

EI(x) ≈ 1
T

T∑
i=1

max{0, yi(x)− ymax}.

Even better, we can leverage that GPR predictions are multivariate normal with
mean µ(x) and variance σ(x). Let z = (µ(x)− ymax)/σ(x). Then

EI(x) = (µ(x)− ymax)CDF(z) + σ(x)PDF(z)

using the PDF and CDF of a standard Gaussian distribution.

Expected Improvement

The model’s predictions y(x) are stochastic. How do we estimate the expected
improvement

EI(x) = E{I(x)} = E{max[0, y(x)− ymax]}?

We can sample y(x) many times, averaging the improvement I(x) for T samples:

EI(x) ≈ 1
T

T∑
i=1

max{0, yi(x)− ymax}.

Even better, we can leverage that GPR predictions are multivariate normal with
mean µ(x) and variance σ(x). Let z = (µ(x)− ymax)/σ(x). Then

EI(x) = (µ(x)− ymax)CDF(z) + σ(x)PDF(z)

using the PDF and CDF of a standard Gaussian distribution.

Expected Improvement

The model’s predictions y(x) are stochastic. How do we estimate the expected
improvement

EI(x) = E{I(x)} = E{max[0, y(x)− ymax]}?

We can sample y(x) many times, averaging the improvement I(x) for T samples:

EI(x) ≈ 1
T

T∑
i=1

max{0, yi(x)− ymax}.

Even better, we can leverage that GPR predictions are multivariate normal with
mean µ(x) and variance σ(x). Let z = (µ(x)− ymax)/σ(x). Then

EI(x) = (µ(x)− ymax)CDF(z) + σ(x)PDF(z)

using the PDF and CDF of a standard Gaussian distribution.

Calculating EI

argmax <- which.max(yn)
ymax <- yn[argmax]
z <- (p$mean - ymax)/sqrt(p$s2)
ei <- (p$mean - ymax)*pnorm(z) + sqrt(p$s2)*dnorm(z)

Calculating EI

EI

Picking the next sample x

argmaxEI <- which.max(ei)
Xn <- c(Xn, X[argmaxEI])
yn <- c(yn, p$mean[argmaxEI])

updateGP(gp, matrix(X[argmaxEI], ncol=1), p$mean[argmaxEI])
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)

Calculating EI (round 2)

argmax <- which.max(yn)
ymax <- yn[argmax]
z <- (p$mean - ymax)/sqrt(p$s2)
ei <- (p$mean - ymax)*pnorm(z) + sqrt(p$s2)*dnorm(z)

Calculating EI (round 2)

EI

Picking the next sample x (round 2)

argmaxEI <- which.max(ei)
Xn <- c(Xn, X[argmaxEI])
yn <- c(yn, p$mean[argmaxEI])

updateGP(gp, matrix(X[argmaxEI], ncol=1), p$mean[argmaxEI])
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)

After the second update

EI

The complete GPR surrogate optimization framework

To maximize the response y of an unknown function f using no more than N
function evaluations:

1. Create a space-filling design Xn for n < N .
2. Measure the responses yn(Xn) and train GP(Xn, yn).
3. Use a nonlinear optimizer (optim) to find the argmax x of a metric (mean,

SD, EI).
4. Measure y(x) and update GP(Xn+1, yn+1).
5. Go to #3 and repeat until all N runs are used.
6. Search GP(XN , yN) for the global maximum y∗(x∗).

Does sequential design always work?

I Sequential design methods are last sample optimal.
I After N − 1 runs, sequential design finds the optimal location for the last

run.

I However, sequential design is greedy. If N − 2 of N runs are finished, two
rounds of sequential design may not be optimal.

Does sequential design always work?

I Sequential design methods are last sample optimal.
I After N − 1 runs, sequential design finds the optimal location for the last

run.
I However, sequential design is greedy. If N − 2 of N runs are finished, two

rounds of sequential design may not be optimal.

Limited lookahead in active learning

ISD = 0.0235

x1

ISD = 0.0184

x1

x2

ISD = 0.0162

x1

x2

ISD = 0.0235

x1

ISD = 0.0188

x1

x2

ISD = 0.0158

x1

x2

Limited lookahead in active learning

ISD = 0.0235

x1

ISD = 0.0184

x1

x2

ISD = 0.0162

x1

x2

ISD = 0.0235

x1

ISD = 0.0188

x1

x2

ISD = 0.0158

x1

x2

What’s wrong with being greedy?

Imagine we have two runs left. There are two strategies:

1. Select both points with our current information GP(XN−2, yN−2). This
ignores the new information available in GP(XN−1, yN−1).

2. Select the first point using current information and select the second point
using GP(XN−1, yN−1). The first point ignores the existence of the second
point.

The “best” solution is often a compromise between two extremes. Given a
budget of N runs and an initial design Xn, we could

1. Place the remaining N − n runs at once using GP(Xn, yn).
2. Place the remaining N − n runs one at a time.

For example, Let N = 36 and n = 16, so we have 20 runs to go. We could

1. Place runs in 5 batches of 4 points, or
2. Place 4 batches of 4 points, followed by 4 one-at-a-time updates.

What’s wrong with being greedy?

Imagine we have two runs left. There are two strategies:

1. Select both points with our current information GP(XN−2, yN−2). This
ignores the new information available in GP(XN−1, yN−1).

2. Select the first point using current information and select the second point
using GP(XN−1, yN−1). The first point ignores the existence of the second
point.

The “best” solution is often a compromise between two extremes. Given a
budget of N runs and an initial design Xn, we could

1. Place the remaining N − n runs at once using GP(Xn, yn).
2. Place the remaining N − n runs one at a time.

For example, Let N = 36 and n = 16, so we have 20 runs to go. We could

1. Place runs in 5 batches of 4 points, or
2. Place 4 batches of 4 points, followed by 4 one-at-a-time updates.

What’s wrong with being greedy?

Imagine we have two runs left. There are two strategies:

1. Select both points with our current information GP(XN−2, yN−2). This
ignores the new information available in GP(XN−1, yN−1).

2. Select the first point using current information and select the second point
using GP(XN−1, yN−1). The first point ignores the existence of the second
point.

The “best” solution is often a compromise between two extremes. Given a
budget of N runs and an initial design Xn, we could

1. Place the remaining N − n runs at once using GP(Xn, yn).
2. Place the remaining N − n runs one at a time.

For example, Let N = 36 and n = 16, so we have 20 runs to go. We could

1. Place runs in 5 batches of 4 points, or
2. Place 4 batches of 4 points, followed by 4 one-at-a-time updates.

Summary

I Surrogate optimization with Gaussian processes finds global optima for
unknown, expensive functions.

I Balancing exploration and exploitation is critical for finding the best
response.

I Sequential design works well but suffers from limited lookahead.

