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Exploration vs. exploitation

There is a fundamental tradeoff in global optimization:
I Exploration searches areas of high uncertainty to find new regions of

interest.
I Exploitation refines existing optima by adding points to known regions of

interest.

Should we explore or exploit?
I Both. Good algorithms balance discovery and refinement.
I The best balance is an open problem. Some solutions:

I Always explore some (small) percent of the time.
I Explore early, exploit later.
I Alternate between batches of exploration and exploitation.
I Today: Combine exploration and exploitation into a single metric.
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A 1-D example (Gramacy 2020)
Xn <- c(1, 2, 3, 4, 12)
yn <- c(0, 1.75, 2, 0.5, -5)
gp <- newGP(matrix(Xn, ncol=1), yn, d=10, g=1e-8)
X <- seq(0, 13, length=1000)
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)



What happens when we consider uncertainty?



Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to expected improvement
(Schonlau 1997).

As usual, assume we’ve measured n responses yn at locations Xn. Define

ymax = max{y1, . . . , yn}.

The improvement in the objective at a new input x is

I(x) = max{0, y(x)− ymax}

where the maximization “floors” the improvement at zero.

The expected improvement EI(x) = E{I(x)} quantifies how much we expect
the best objective value to increase after measuring at point x.
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Expected Improvement

The model’s predictions y(x) are stochastic. How do we estimate the expected
improvement

EI(x) = E{I(x)} = E{max[0, y(x)− ymax]}?

We can sample y(x) many times, averaging the improvement I(x) for T samples:

EI(x) ≈ 1
T

T∑
i=1

max{0, yi(x)− ymax}.

Even better, we can leverage that GPR predictions are multivariate normal with
mean µ(x) and variance σ(x). Let z = (µ(x)− ymax)/σ(x). Then

EI(x) = (µ(x)− ymax)CDF(z) + σ(x)PDF(z)

using the PDF and CDF of a standard Gaussian distribution.
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Calculating EI

argmax <- which.max(yn)
ymax <- yn[argmax]
z <- (p$mean - ymax)/sqrt(p$s2)
ei <- (p$mean - ymax)*pnorm(z) + sqrt(p$s2)*dnorm(z)



Calculating EI

EI



Picking the next sample x

argmaxEI <- which.max(ei)
Xn <- c(Xn, X[argmaxEI])
yn <- c(yn, p$mean[argmaxEI])

updateGP(gp, matrix(X[argmaxEI], ncol=1), p$mean[argmaxEI])
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)



Calculating EI (round 2)
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Picking the next sample x (round 2)
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After the second update

EI



The complete GPR surrogate optimization framework

To maximize the response y of an unknown function f using no more than N
function evaluations:

1. Create a space-filling design Xn for n < N .
2. Measure the responses yn(Xn) and train GP(Xn, yn).
3. Use a nonlinear optimizer (optim) to find the argmax x of a metric (mean,

SD, EI).
4. Measure y(x) and update GP(Xn+1, yn+1).
5. Go to #3 and repeat until all N runs are used.
6. Search GP(XN , yN ) for the global maximum y∗(x∗).



Does sequential design always work?

I Sequential design methods are last sample optimal.
I After N − 1 runs, sequential design finds the optimal location for the last

run.

I However, sequential design is greedy. If N − 2 of N runs are finished, two
rounds of sequential design may not be optimal.
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Limited lookahead in active learning
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What’s wrong with being greedy?

Imagine we have two runs left. There are two strategies:

1. Select both points with our current information GP(XN−2, yN−2). This
ignores the new information available in GP(XN−1, yN−1).

2. Select the first point using current information and select the second point
using GP(XN−1, yN−1). The first point ignores the existence of the second
point.

The “best” solution is often a compromise between two extremes. Given a
budget of N runs and an initial design Xn, we could

1. Place the remaining N − n runs at once using GP(Xn, yn).
2. Place the remaining N − n runs one at a time.

For example, Let N = 36 and n = 16, so we have 20 runs to go. We could

1. Place runs in 5 batches of 4 points, or
2. Place 4 batches of 4 points, followed by 4 one-at-a-time updates.
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Summary

I Surrogate optimization with Gaussian processes finds global optima for
unknown, expensive functions.

I Balancing exploration and exploitation is critical for finding the best
response.

I Sequential design works well but suffers from limited lookahead.


