Surrogate Optimization: Expected Improvement

BIOE 498/598 PJ

Spring 2022

### Exploration vs. exploitation

There is a fundamental tradeoff in global optimization:

- Exploration searches areas of high uncertainty to find *new* regions of interest.
- Exploitation refines existing optima by adding points to known regions of interest.

### Exploration vs. exploitation

There is a fundamental tradeoff in global optimization:

- Exploration searches areas of high uncertainty to find *new* regions of interest.
- Exploitation refines existing optima by adding points to known regions of interest.

Should we explore or exploit?

- **Both.** Good algorithms balance discovery and refinement.
- ▶ The *best* balance is an open problem. Some solutions:
  - Always explore some (small) percent of the time.
  - Explore early, exploit later.
  - Alternate between batches of exploration and exploitation.
  - **Today:** Combine exploration and exploitation into a single metric.





# What happens when we consider uncertainty?



### Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to *expected improvement* (Schonlau 1997).

As usual, assume we've measured n responses  $y_n$  at locations  $X_n$ . Define

 $y_{\max} = \max\{y_1, \ldots, y_n\}.$ 

### Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to *expected improvement* (Schonlau 1997).

As usual, assume we've measured n responses  $y_n$  at locations  $X_n$ . Define

 $y_{\max} = \max\{y_1, \ldots, y_n\}.$ 

The *improvement* in the objective at a new input x is

$$I(x) = \max\{0, y(x) - y_{\max}\}\$$

where the maximization "floors" the improvement at zero.

### Optimizing for objective improvement

A key insight in Bayesian optimization was the switch to *expected improvement* (Schonlau 1997).

As usual, assume we've measured n responses  $y_n$  at locations  $X_n$ . Define

 $y_{\max} = \max\{y_1, \ldots, y_n\}.$ 

The *improvement* in the objective at a new input x is

$$I(x) = \max\{0, y(x) - y_{\max}\}\$$

where the maximization "floors" the improvement at zero.

The expected improvement  $EI(x) = \mathbb{E}\{I(x)\}$  quantifies how much we expect the best objective value to increase after measuring at point x.

## Expected Improvement

The model's predictions  $\boldsymbol{y}(\boldsymbol{x})$  are stochastic. How do we estimate the expected improvement

$$\operatorname{EI}(x) = \mathbb{E}\{I(x)\} = \mathbb{E}\{\max[0, y(x) - y_{\max}]\}?$$

## Expected Improvement

The model's predictions  $\boldsymbol{y}(\boldsymbol{x})$  are stochastic. How do we estimate the expected improvement

$$\operatorname{EI}(x) = \mathbb{E}\{I(x)\} = \mathbb{E}\{\max[0, y(x) - y_{\max}]\}?$$

We can sample y(x) many times, averaging the improvement I(x) for T samples:

$$EI(x) \approx \frac{1}{T} \sum_{i=1}^{T} \max\{0, y_i(x) - y_{\max}\}.$$

### Expected Improvement

The model's predictions  $\boldsymbol{y}(\boldsymbol{x})$  are stochastic. How do we estimate the expected improvement

$$\mathbb{EI}(x) = \mathbb{E}\{I(x)\} = \mathbb{E}\{\max[0, y(x) - y_{\max}]\}?$$

We can sample y(x) many times, averaging the improvement I(x) for T samples:

$$EI(x) \approx \frac{1}{T} \sum_{i=1}^{T} \max\{0, y_i(x) - y_{\max}\}.$$

Even better, we can leverage that GPR predictions are multivariate normal with mean  $\mu(x)$  and variance  $\sigma(x)$ . Let  $z = (\mu(x) - y_{\max})/\sigma(x)$ . Then

$$EI(x) = (\mu(x) - y_{max})CDF(z) + \sigma(x)PDF(z)$$

using the PDF and CDF of a standard Gaussian distribution.

# Calculating El

```
argmax <- which.max(yn)
ymax <- yn[argmax]
z <- (p$mean - ymax)/sqrt(p$s2)
ei <- (p$mean - ymax)*pnorm(z) + sqrt(p$s2)*dnorm(z)</pre>
```

Calculating El



#### Picking the next sample x

```
argmaxEI <- which.max(ei)
Xn <- c(Xn, X[argmaxEI])
yn <- c(yn, p$mean[argmaxEI])
```

updateGP(gp, matrix(X[argmaxEI], ncol=1), p\$mean[argmaxEI])
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)</pre>



```
Calculating El (round 2)
```

```
argmax <- which.max(yn)
ymax <- yn[argmax]
z <- (p$mean - ymax)/sqrt(p$s2)
ei <- (p$mean - ymax)*pnorm(z) + sqrt(p$s2)*dnorm(z)</pre>
```

# Calculating El (round 2)



Picking the next sample x (round 2)

```
argmaxEI <- which.max(ei)
Xn <- c(Xn, X[argmaxEI])
yn <- c(yn, p$mean[argmaxEI])
updateGP(gp, matrix(X[argmaxEI], ncol=1), p$mean[argmaxEI])
p <- predGP(gp, matrix(X, ncol=1), lite=TRUE)</pre>
```

# After the second update



# EL

# The complete GPR surrogate optimization framework

To maximize the response  $\boldsymbol{y}$  of an unknown function  $\boldsymbol{f}$  using no more than N function evaluations:

- 1. Create a space-filling design  $X_n$  for n < N.
- 2. Measure the responses  $y_n(X_n)$  and train  $\mathcal{GP}(X_n, y_n)$ .
- 3. Use a nonlinear optimizer (optim) to find the argmax x of a metric (mean, SD, EI).
- 4. Measure y(x) and update  $\mathcal{GP}(X_{n+1}, y_{n+1})$ .
- 5. Go to #3 and repeat until all N runs are used.
- 6. Search  $\mathcal{GP}(X_N, y_N)$  for the global maximum  $y^*(x^*)$ .

Does sequential design always work?

- Sequential design methods are **last sample optimal**.
- After N-1 runs, sequential design finds the optimal location for the last run.

### Does sequential design always work?

- Sequential design methods are last sample optimal.
- After N 1 runs, sequential design finds the optimal location for the last run.
- However, sequential design is *greedy*. If N 2 of N runs are finished, two rounds of sequential design may not be optimal.

### Limited lookahead in active learning



### Limited lookahead in active learning





### What's wrong with being greedy?

Imagine we have two runs left. There are two strategies:

- 1. Select both points with our current information  $\mathcal{GP}(X_{N-2}, y_{N-2})$ . This ignores the new information available in  $\mathcal{GP}(X_{N-1}, y_{N-1})$ .
- 2. Select the first point using current information and select the second point using  $\mathcal{GP}(X_{N-1}, y_{N-1})$ . The first point ignores the existence of the second point.

### What's wrong with being greedy?

Imagine we have two runs left. There are two strategies:

- 1. Select both points with our current information  $\mathcal{GP}(X_{N-2}, y_{N-2})$ . This ignores the new information available in  $\mathcal{GP}(X_{N-1}, y_{N-1})$ .
- 2. Select the first point using current information and select the second point using  $\mathcal{GP}(X_{N-1}, y_{N-1})$ . The first point ignores the existence of the second point.

The "best" solution is often a compromise between two extremes. Given a budget of N runs and an initial design  $X_n$ , we could

- 1. Place the remaining N n runs at once using  $\mathcal{GP}(X_n, y_n)$ .
- 2. Place the remaining N n runs one at a time.

### What's wrong with being greedy?

Imagine we have two runs left. There are two strategies:

- 1. Select both points with our current information  $\mathcal{GP}(X_{N-2}, y_{N-2})$ . This ignores the new information available in  $\mathcal{GP}(X_{N-1}, y_{N-1})$ .
- 2. Select the first point using current information and select the second point using  $\mathcal{GP}(X_{N-1}, y_{N-1})$ . The first point ignores the existence of the second point.

The "best" solution is often a compromise between two extremes. Given a budget of N runs and an initial design  $X_n$ , we could

- 1. Place the remaining N n runs at once using  $\mathcal{GP}(X_n, y_n)$ .
- 2. Place the remaining N n runs one at a time.

For example, Let N = 36 and n = 16, so we have 20 runs to go. We could

- 1. Place runs in 5 batches of 4 points, or
- 2. Place 4 batches of 4 points, followed by 4 one-at-a-time updates.

# Summary

- Surrogate optimization with Gaussian processes finds global optima for unknown, expensive functions.
- Balancing exploration and exploitation is critical for finding the best response.
- Sequential design works well but suffers from limited lookahead.