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Supervised learning vs. Reinforcement learning (RL)

Supervised Learning

I Learning from data that has already been collected

I Examples: Linear models, Gaussian Process Regression, Neural Networks

Reinforcement Learning

I Learning from trial and error

I Examples: Animals, computer chess, self-driving cars
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RL is structured randomness

I Many RL algorithms rely on random processes to generate data.

I RL needs structure to learn from these data.

I The most common framework is the Markov Decision Process (MDP).



Markov Decision Processes

MDPs describe how an agent interacts with its environment.

I At any time, the agent and environment are described by a state.

I The agent selects an action to move between states.

I Every action and state produce a reward.

I The agent’s goal is to maximize the total reward it collects.

MDPs have the Markov Property:

I All decisions depend only on the current state.

I Each state includes all of the relevant history.
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Markov Decision Processes (continued)

I We denote a state as s.

I The actions a ∈ A available to the agent can depend on the state, so
A = A(s).

I A policy π is a function that maps states to actions. The value π(s, a) is
the probability that the agent will select action a in state s.

I MDPs can be deterministic or stochastic.
I Deterministic: Actions always determine the next state.
I Stochastic: Actions change the probability that any other state will be the

next state.

I We will focus on finite horizon or episodic MDPs.
I Finite horizon MDPs stop (terminate) after a finite number of actions.
I A trajectory is a single pass through a finite horizon MDP.
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Gridworld

Imagine a simple maze on a 4× 4 grid.

I Each square is a state.

I The walls determine the available actions at each state.

I The agent starts in the bottom left and must reach the top right.

I The objective is to finish the maze in as few steps as possible.

start

end



A Monte Carlo approach

I Each grid square is a state.

I Actions: move up, down, left, or
right, but the agent cannot leave
the grid.

I Reward: −1 for each step.

I Policy: Random.

Starting from a random state, make
random moves until the agent reaches
the end.

Repeat may times and average the
total rewards from each trajectory.



From randomness to a better policy (policy improvement)



Let’s add an internal
wall for the agent to
navigate.
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Can the agent learn a
shortcut?
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Summary

I RL agents can learn by trial and error.

I MDPs provide a mathematical structure for RL problems.

I The choice of states, actions, and rewards is critical.

I Next time: What are we learning from our random maze walks?
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