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Review

Last time

I RL agents learn by trial and error.

I RL problems are formulated as MDPs.

I Monte Carlo methods can find policies for RL problems.

I Today: How do random simulations lead to optimal policies?
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A Monte Carlo approach for Gridworld

I Each grid square is a state.

I Actions: move up, down, left, or
right, but the agent cannot leave
the grid.

I Reward: −1 for each step.

I Policy: Random.

Starting from a random state, make
random moves until the agent reaches
the end.

Repeat may times and average the
total rewards from each trajectory.

The policy is to move to squares with
better Monte Carlo returns.



Value functions

I We are using Monte Carlo to learn a value function.

I The value of a state is the expected reward from that state to the end of
the trajectory:

V (si) = E

{
T∑
k=i

rk

}
= E{Ri}

where Ri is the return starting at state si, i.e. the cumulative reward for
the rest of the trajectory: Ri = ri + ri+1 + · · ·+ rT−1 + rT .

I If we know the value function we can derive a policy: Take the action that
moves to the state with the highest value.
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Trajectories

I A trajectory in an MDP is a sequence of states, actions, and rewards:

s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT , rT

I The length T can vary for every trajectory.

I There is no action selected in the terminal state sT , but there can be a
terminal reward rT .

I A reward ri can be positive (reward), negative (penalty), or zero. Some
MDPs only have a nonzero terminal reward!



From trajectories to value functions

Let’s calculate V (s) for a 3× 3 Gridworld
board.

The MDP is deterministic, so knowing si and
si+1 tells us ai. Also, ri = −1 for all
0 ≤ i < T . 1 2 3

4 5 6

7 8 9

start

end

Four trajectories beginning at s1:

τ1 : 1, 2, 5, 4, 5, 6, 3, 6, 9 Rτ1 = −8
τ2 : 1, 2, 3, 6, 3, 2, 5, 8, 7, 8, 5, 6, 9 Rτ2 = −12
τ3 : 1, 2, 5, 2, 3, 6, 9 Rτ3 = −6
τ4 : 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9 Rτ4 = −16

V (s1) ≈
Rτ1 +Rτ2 +Rτ3 +Rτ4

4
=

(−8) + (−12) + (−6) + (−16)
4

= −10.5
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Re-using our trajectories to find V (s2)

τ1 : 1, 2, 5, 4, 5, 6, 3, 6, 9

τ2 : 1, 2, 3, 6, 3, 2, 5, 8, 7, 8, 5, 6, 9

τ3 : 1, 2, 5, 2, 3, 6, 9

τ4 : 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9
1 2 3

4 5 6

7 8 9

start

end

We can estimate V (s2) using the same trajectories because of the Markov
Property. Every visit to s2 is equivalent to new trajectory that begins at s2.

Some trajectories visit s2 more than once. For example, τ3 has two returns
R = −5 and R = −3.

Every-visit average: (−7− 11− 7− 5− 3− 15− 11− 3)/8 = −7.75.
Last-visit average: (−7− 7− 3− 3)/4 = −5.
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Every-visit vs. last-visit

I Gridworld is deterministic and the agent has complete control over its
actions.

I The agent should never visit the same state twice. Whatever sequence of
actions are optimal after the second visit should have been selected after
the first visit.

I For these problems, the last-visit estimate is closest to optimal.

I Stochastic problems can revisit the same state under the optimal policy.
I Imagine a stochastic airline, where planes fly to an unknown destination

after takeoff.
I If you are trying to fly to Champaign, flights departing from O’Hare have

the best chance of landing in Champaign.
I The optimal policy would be go back to O’Hare even if you’ve already been

there.
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Can we always find optimal policies from a value function?

Yes. Acting greedy with respect to a value function is optimal. Recall our
definition of the value function

V (si) = E{ri + ri+1 + · · ·+ rT }.

At any state si, the optimal policy follows the objective

max
ai

E{ri + ri+1 + · · ·+ rT }

=max
ai

E{ri}+ E{ri+1 + · · ·+ rT }

=max
ai

E{ri}+ V (si+1)

For Gridworld, ri = −1 for all states, so the optimal policy at state si satisfies

max
ai

V (si+1)

i.e., select the action that brings the agent to the state with the largest value.
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Limitations of pure Monte Carlo

Random walks generate inefficient trajectories,
as evidenced by the Monte Carlo value
functions.

We can tell that some actions are bad even
before we have a true value function.

Ideally, we would use early trajectories to speed
up later trajectories.

One solution is generalized policy iteration.

1. Use a random policy π to generate
trajectories and estimate V (s).

2. Adjust π to be greedy for V (s).

3. Repeat (1–2) until π stops changing.
π(s, a) V (s)

policy evaluation

policy improvement
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Does generalized policy iteration converge to an optimal policy?

Yes, policy iteration is guaranteed to find optimal policies provided every state
is visited an infinite number of times.

In practice, policy iteration works well with finite visits, but tabular methods
require visiting every state. Without a visit, we have no way to tell if a policy
should move to that state.

For Gridworld, we started trajectories in every state to ensure a visit, but this
was inefficient.

For this board, why would we every
visit the states in the upper left?

No optimal policy would ever move
“up” at the starting position. start

end

Next time we’ll learn online methods to estimate a value function as we move
through an MDP.
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Summary

I Policy evaluation computes V (s) for a given policy.

I Policy improvement makes greedy improvements to a policy.

I If you don’t have a good starting policy, behave randomly.

I Tabular methods track V (s) for every state in the MDP. They require
visiting every state many times and storing the results.


