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Review

The value function is the expected sum of future rewards

V (si) = E{ri + ri+1 + · · ·+ rT }.

At any state si, the optimal policy follows the objective

max
ai

E{ri + ri+1 + · · ·+ rT }

=max
ai

E{ri}+ E{ri+1 + · · ·+ rT }

=max
ai

E{ri}+ V (si+1)



Optimal policies can be found with a value function.

The optimal RL policy balances the immediate reward ri with future rewards
V (si+1):

π∗(si) = argmax
ai

{E[ri] + V (si+1)} .

If we know the value function, the optimal policy is to be greedy with respect
to it. However, we rarely know V :

I Monte Carlo estimation of V is only approximate even with many
simulations.

I If the state space is very large, we may never visit every state to estimate
V by tabular methods.

Instead, we use an approximate value function Ṽ (s) to find a sub-optimal
policy π(s).
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policy π(s).



Optimal policies can be found with a value function.

The optimal RL policy balances the immediate reward ri with future rewards
V (si+1):

π∗(si) = argmax
ai

{E[ri] + V (si+1)} .

If we know the value function, the optimal policy is to be greedy with respect
to it. However, we rarely know V :

I Monte Carlo estimation of V is only approximate even with many
simulations.

I If the state space is very large, we may never visit every state to estimate
V by tabular methods.

Instead, we use an approximate value function Ṽ (s) to find a sub-optimal
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Approximate value functions.

There are two classes of methods for approximating a value function.

1. Parametric approximation trains a model that predicts value from
previous visits to states. The model predicts the value for all states, even
those that have not been visited.
I Any type of model can be used to predict value: Linear models, Gaussian

Process Regression, Artificial Neural Networks (“Deep RL”).
I Parametric methods are often offline; the model is trained before the agent

uses the model to navigate an MDP.

2. Monte Carlo approximation uses a model of the MDP to simulate the
rewards following a state.
I Monte Carlo methods work well online by simulating states just ahead of

the agent in the MDP.
I These methods are sample efficient but require a computational model of

the MDP.
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Rollout

I Rollout is a Monte Carlo method frequently used for online RL.

I Rollout “looks ahead” to estimate the value of states the agent is likely to
visit next.

I Rollout is robust and works with many RL problems. Variants of rollout
(e.g. MCTS) power AlphaGo, AlphaZero, and other top game engines.

I Rollout can be used for policy iteration, but we will limit our discussion to
a single pass through an MDP.



The rollout algorithm

Rollout requires

I A simulator that generates sequences

si, ai, ri, . . . , sT−1, aT−1, rT−1, sT , rT

given a policy π.

I A base policy πbase to use with the simulator. A random base policy works.
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Rollout in Gridworld

start

end

s

−32.8

−33.3

−18.6s

I Imagine we are in the middle of the maze
at state s.

I There are three available actions: {left,
up, down}.

I We use random walks to estimate Ṽ after
each action.

I We select the action that leads to the best
estimated value.
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Policy improvement with rollout

I The online policy we are finding is called the rollout policy.

I The rollout policy has the policy improvement property — it will be equal
to or better than the base policy.

I We can repeat the process with another trip through the MDP using the
rollout policy as the new base policy.

I However, iterating in this way requires us to add exploration to our
policies.



Summary

I Rollout is an online method that reduces simulation by focusing on local
starts.

I A single pass with a random base policy provides good, but not necessarily
optimal, behavior.

I Iteration and exploration are required to find optimal policies.


