Reinforcement Learning: Rollout

BIOE 498/598 PJ

Spring 2022
The value function is the expected sum of future rewards

\[V(s_i) = \mathbb{E}\{r_i + r_{i+1} + \cdots + r_T\} \]

At any state \(s_i \), the optimal policy follows the objective

\[
\max_{a_i} \mathbb{E}\{r_i + r_{i+1} + \cdots + r_T\}
\]

\[
= \max_{a_i} \mathbb{E}\{r_i\} + \mathbb{E}\{r_{i+1} + \cdots + r_T\}
\]

\[
= \max_{a_i} \mathbb{E}\{r_i\} + V(s_{i+1})
\]
Optimal policies can be found with a value function.

The optimal RL policy balances the immediate reward r_i with future rewards $V(s_{i+1})$:

$$\pi^*(s_i) = \arg \max_{a_i} \{ \mathbb{E}[r_i] + V(s_{i+1}) \}.$$
Optimal policies can be found with a value function.

The optimal RL policy balances the immediate reward r_i with future rewards $V(s_{i+1})$:

$$\pi^*(s_i) = \arg \max_{a_i} \{ \mathbb{E}[r_i] + V(s_{i+1}) \}.$$

If we know the value function, the optimal policy is to be greedy with respect to it. However, we rarely know V:

- Monte Carlo estimation of V is only approximate even with many simulations.
- If the state space is very large, we may never visit every state to estimate V by tabular methods.
Optimal policies can be found with a value function.

The optimal RL policy balances the immediate reward r_i with future rewards $V(s_{i+1})$:

$$\pi^*(s_i) = \arg\max_{a_i} \{E[r_i] + V(s_{i+1})\}.$$

If we know the value function, the optimal policy is to be greedy with respect to it. However, we rarely know V:

- Monte Carlo estimation of V is only approximate even with many simulations.
- If the state space is very large, we may never visit every state to estimate V by tabular methods.

Instead, we use an approximate value function $\tilde{V}(s)$ to find a sub-optimal policy $\pi(s)$.
There are two classes of methods for approximating a value function.

1. **Parametric approximation** trains a model that predicts value from previous visits to states. The model predicts the value for all states, even those that have not been visited.
 - Any type of model can be used to predict value: Linear models, Gaussian Process Regression, Artificial Neural Networks (“Deep RL”).
 - Parametric methods are often offline; the model is trained before the agent uses the model to navigate an MDP.

2. **Monte Carlo approximation** uses a model of the MDP to simulate the rewards following a state.
 - Monte Carlo methods work well online by simulating states just ahead of the agent in the MDP.
 - These methods are sample efficient but require a computational model of the MDP.
Approximate value functions.

There are two classes of methods for approximating a value function.

1. **Parametric approximation** trains a model that predicts value from previous visits to states. The model predicts the value for all states, even those that have not been visited.
 - Any type of model can be used to predict value: Linear models, Gaussian Process Regression, Artificial Neural Networks ("Deep RL").
 - Parametric methods are often *offline*; the model is trained before the agent uses the model to navigate an MDP.

2. **Monte Carlo approximation** uses a model of the MDP to simulate the rewards following a state.
 - Monte Carlo methods work well *online* by simulating states just ahead of the agent in the MDP.
 - These methods are *sample efficient* but require a computational model of the MDP.
Rollout

- Rollout is a Monte Carlo method frequently used for online RL.
- Rollout “looks ahead” to estimate the value of states the agent is likely to visit next.
- Rollout is robust and works with many RL problems. Variants of rollout (e.g. MCTS) power AlphaGo, AlphaZero, and other top game engines.
- Rollout can be used for policy iteration, but we will limit our discussion to a single pass through an MDP.
The rollout algorithm

Rollout requires

- A *simulator* that generates sequences

 \[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]

 given a policy \(\pi \).

- A *base policy* \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.
The rollout algorithm

Rollout requires

- A simulator that generates sequences

\[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]

given a policy \(\pi \).

- A base policy \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.
The rollout algorithm

Rollout requires

- A simulator that generates sequences

\[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]

given a policy \(\pi \).

- A base policy \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.
The rollout algorithm

Rollout requires

- A simulator that generates sequences

 \[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]

 given a policy \(\pi \).

- A base policy \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.
The rollout algorithm

Rollout requires

- A simulator that generates sequences

\[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]

given a policy \(\pi \).

- A base policy \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.
The rollout algorithm

Rollout requires

- A simulator that generates sequences
 \[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]
 given a policy \(\pi \).

- A base policy \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.

\[\tilde{V}(s(a_1)) = \frac{1}{n} (R_1 + R_2 + \cdots + R_n) \]
The rollout algorithm

Rollout requires

- A simulator that generates sequences
 \[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]
 given a policy \(\pi \).

- A base policy \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.

![Diagram of rollout algorithm]

\[\tilde{V}(s(a_1)) \]
\[\tilde{V}(s(a_2)) \]
\[\vdots \]
\[\tilde{V}(s(a_k)) \]
The rollout algorithm

Rollout requires

- **A simulator** that generates sequences

\[s_i, a_i, r_i, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T \]

... given a policy \(\pi \).

- **A base policy** \(\pi_{\text{base}} \) to use with the simulator. A random base policy works.
Rollout in Gridworld

Imagine we are in the middle of the maze at state s.

▶ Imagine we are in the middle of the maze at state s.

| start | s | end |
Rollout in Gridworld

Imagine we are in the middle of the maze at state s.

There are three available actions: \{left, up, down\}.

![Diagram of a maze with actions at state s]
Rollout in Gridworld

Imagine we are in the middle of the maze at state s.

- There are three available actions: \{left, up, down\}.
- We use random walks to estimate \tilde{V} after each action.
Rollout in Gridworld

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>s</td>
<td>end</td>
</tr>
</tbody>
</table>

- Imagine we are in the middle of the maze at state s.
- There are three available actions: \{left, up, down\}.
- We use random walks to estimate \tilde{V} after each action.
- We select the action that leads to the best estimated value.
Policy improvement with rollout

- The online policy we are finding is called the *rollout policy*.
- The rollout policy has the *policy improvement property* — it will be equal to or better than the base policy.
- We can repeat the process with another trip through the MDP using the rollout policy as the new base policy.
- However, iterating in this way requires us to add exploration to our policies.
Rollout is an online method that reduces simulation by focusing on local
starts.

A single pass with a random base policy provides good, but not necessarily
optimal, behavior.

Iteration and exploration are required to find optimal policies.