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Review

I Rollout is an online method that reduces simulation by focusing on local
starts.

I A single pass with a random base policy provides good, but not necessarily
optimal, behavior.

I Iteration and exploration are required to find optimal policies.

I Today: Model-free learning with discounted rewards and Q-factors.
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Discount factors

Let’s extend our RL theory to incorporate discounting — reducing the present
value of rewards from the future.

Discounting applies a horizon to the problem. The agent cares less and less
about future states.

Undiscounted: max
a

E {ri + V (si+1)}

Discounted: max
a

E {ri + γV (si+1)}

The discount factor γ ∈ [0, 1] determines the length of the horizon.

I γ = 0 makes the algorithms greedy; only the immediate reward ri
influences the agent.

I γ = 1 equally weights all rewards to the end of the trajectory.



Discount factors

Let’s extend our RL theory to incorporate discounting — reducing the present
value of rewards from the future.

Discounting applies a horizon to the problem. The agent cares less and less
about future states.

Undiscounted: max
a

E {ri + V (si+1)}

Discounted: max
a

E {ri + γV (si+1)}

The discount factor γ ∈ [0, 1] determines the length of the horizon.

I γ = 0 makes the algorithms greedy; only the immediate reward ri
influences the agent.

I γ = 1 equally weights all rewards to the end of the trajectory.



Discount factors

Let’s extend our RL theory to incorporate discounting — reducing the present
value of rewards from the future.

Discounting applies a horizon to the problem. The agent cares less and less
about future states.

Undiscounted: max
a

E {ri + V (si+1)}

Discounted: max
a

E {ri + γV (si+1)}

The discount factor γ ∈ [0, 1] determines the length of the horizon.

I γ = 0 makes the algorithms greedy; only the immediate reward ri
influences the agent.

I γ = 1 equally weights all rewards to the end of the trajectory.



Discounting in Gridworld

I For Gridworld we used a penalty (negative reward) to encourage the agent
to finish the maze quickly.

I Instead of penalizing each action, we could discount and offer a terminal
reward.

Penalized stepping with ri = −1, rT = 0:

reward = r0 + r1 + · · ·+ rT−1 + rT

=

T−1∑
i=0

ri + 0

= −T

Discounting with ri = 0, rT = 1, γ < 1:

reward = r0 + γ(r1 + γ(r2 + γ(· · · γ(rT−1 + γ(rT )))))

= r0 + γr1 + γ2r2 + · · · γT−1rT−1 + γT rT

= γT

In both cases, the maximum reward is achieved by minimizing the number of
steps T .
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When to discount?

Almost all algorithms are written with a discount factor

max
a

E {ri + γV (si+1)} .

I If you don’t want to discount future rewards, set γ = 1.

I If you want to compare your algorithm to a greedy algorithm, set γ = 0.

I If you want the agent to terminate the process quickly, set γ < 1.

Discounting is also the key to solving non-episodic (infinite horizon) problems.
While the MDP never terminates, the discounted rewards become so small that
the agent stops caring after a finite number of steps.
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Model-free learning

I Monte Carlo methods like rollout require a model to simulate ahead when
estimating value functions.

I Model-free algorithms learn directly from experience. Their only method
of sampling is to interact with the environment.

I Model-free algorithms try to maximize the information that can be
extracted from every trajectory.



Temporal difference learning

I Model-free algorithms learn directly from experience.

I Each trajectory is “expensive” relative to a simulated trajectory.

I Ideally, we would update our estimates of the value function from every
trajectory; however, a single trajectory is a noisy estimate of value.

I Temporal difference (TD) learning balances new experiences with
previous results when updating V (s).



The TD-learning algorithm

1. Initialize our value estimates V (s) for all states s.

2. Experience a new trajectory s0, a0, r0, s1, a1, r1 . . ., sT , rT .

3. For each state si in the trajectory, calculate the TD target

V̂ (si) = ri + γV (si+1)

using the experienced reward ri and the previous estimate for V (si+1).

4. Incrementally update the value of state si using a learning rate α:

V (si) = V (si) + α
[
V̂ (si)− V (si)

]
.

5. Go to step #2 and repeat.

TD-learning is a bootstrap method since V (s) is updated using V (si) and
V (si+1) from the previous iteration. New information only enters through ri
when estimating the TD target V̂ (si).
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Q-factors

Learning V (s) is not the end. We still need to find a policy that solves

max
a

E {ri + γV (si+1)} .

This requires knowing si+1 given si and a, or at least the probability
distribution for ending up in each state.

Example: In chess, the state si is the arrangement of all the pieces on the
board.

I We select a based on the reward ri (which is usually zero) and the future
value V (si+1).

I However, si+1 is the state after our opponent’s turn! We have no idea
what move our opponent will make.

For many problems it is easier to learn the value of each state/action pair,
called a Q-factor or Q(s, a).
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Learning Q-factors

Using Q-factors, the policy problem at state s

max
a

E {ri + γV (si+1)}

becomes
max

a
E {Q(si, a)} .

I Pro: We do not need a model or a way to predict si+1.

I Con: We need to learn a Q-factor for every state/action pair.

We can learn Q-factors using a TD approach given a trajectory s0, a0, r0,
s1, a1, r1 . . ., sT , rT :

Q̂(si, ai) = ri + γQ(si+1, ai+1) target

Q(si, ai) = Q(si, ai) + α
[
Q̂(si, ai)−Q(si, ai)

]
update

This approach is also called SARSA.
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Summary

I Discount factors shorten the horizon of RL problems, causing the agent to
focus on rewards in the near future.

I Temporal Difference (TD) learning incrementally updates value functions
using a new experience.

I Learning Q-factors eliminates the need to predict the next state given an
action; however, the number of Q-factors is much greater than the
number of states.

I Next time: AlphaGo! (watch the documentary this weekend)
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