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Review

I Discount factors shorten the horizon of RL problems, causing the agent to
focus on rewards in the near future.

I Temporal Difference (TD) learning incrementally updates value functions
using a new experience.

I Learning Q-factors eliminates the need to predict the next state given an
action; however, the number of Q-factors is much greater than the
number of states.

I Today:
I Review SARSA

I Q-learning

I AlphaGo
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Learning Q-factors

Using Q-factors, the policy problem at state si

max
a

E {ri + γV (si+1)}

becomes
max

a
E {Q(si, a)} .

I Pro: We do not need a model or a way to predict si+1.

I Con: We need to learn a Q-factor for every state/action pair.

We can learn Q-factors using a TD approach given a trajectory s0, a0, r0,
s1, a1, r1 . . ., sT , rT :

Q̂(si, ai) = ri + γQ(si+1, ai+1) target

Q(si, ai)← Q(si, ai) + α
[
Q̂(si, ai)−Q(si, ai)

]
update

This approach is called SARSA.
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SARSA follows a trajectory, not an optimal path

The SARSA update equation is

Q(si, ai)← Q(si, ai) + α

[
ri + γQ(si+1, ai+1)︸ ︷︷ ︸

target

−Q(si, ai)

]
.

Our estimate of Q(si, ai) is based on

I The reward ri experienced by selecting action ai in state si.

I The future reward Q(si+1, ai+1) based on the action ai+1 from the
trajectory.

The policy that generated the trajectory is not optimal, so it is likely that ai+1

was not the best action to take.

Selecting a suboptimal action underestimates the reward to go, and therefore
the value Q(si, ai).
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Q-learning

The Q-learning algorithm changes the SARSA update

Q(si, ai)← Q(si, ai) + α [ri + γQ(si+1, ai+1)−Q(si, ai)]

to use the optimal action in state si+1:

Q(si, ai)← Q(si, ai) + α
[
ri + γmax

a
Q(si+1, a)−Q(si, ai)

]
.

Q-learning can converge faster to an optimal policy. However, it has two
drawbacks:

1. If the number of available actions is large, the maximization operator can
be expensive to evaluate.

2. The maximization operator is biased.
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Records were meant to be broken.

I Imagine that the quality of professional basketball players was fixed over
time.

I In this case, scoring records would still be broken.

I Basketball includes stochastic elements, so as more games are played the
chance of observing outliers increases.

Any algorithm with a max operator will drift upwards over time, even if the
mean value remains fixed.

For Q-learning, we need to combat the bias in the max operator.
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Double Q-learning

One solution to the max bias is using two separate Q functions (networks),
called Q1 and Q2.

Both Q1 and Q2 are trained with separate experiences. (Or, one network can
lag behind the other in experiences.)

When updating, we use one network to select the action, and the other network
to compute its value.

Q1(si, ai)← Q1(si, ai) + α [ri + γ Q2(si+1, a1)−Q1(si, ai)]

a1 ≡ argmax
a

Q1(si+1, a)

Q2(si, ai)← Q2(si, ai) + α [ri + γ Q1(si+1, a2)−Q2(si, ai)]

a2 ≡ argmax
a

Q2(si+1, a)

Even if a1 was selected because Q1(si+1, a1) was aberrantly high, the value
Q2(si+1, a1) will not share this bias.
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Summary

I Q-learning is a state-of-the-art technique for RL.

I Double Q-learning counteracts the bias in the max operator.


